By Hideaway: Energy and Electricity

Mirage

Today’s guest post by Hideaway reviews our ‘plan’ to transition off fossil energy, and shows it is in fact a mirage.

Hideaway is a new force active at un-Denial and other sites that discuss energy and overshoot. He focusses on the feasibility of transitioning our energy system, and brings a data-backed, reality-based, adult conversation into a space that is more often than not filled with ignorance, hope, and denial.

As I was writing a post about EROEI, I came across data for energy production and consumption from Our World in Data. It’s all very professionally made and ‘free’ for anyone to use in their energy discussions.

I spotted one problem though, the data presented has a caveat, they use the substitution method for non-fossil fuel generated electricity, and in the fine print this is explained as… “ Substituted primary energy, which converts non-fossil electricity into their ‘input equivalents’: The amount of primary energy that would be needed if they had the same inefficiencies as fossil fuels. This ‘substitution method’ is adopted by the Energy Institute’s Statistical Review of World Energy, when all data is compared in exajoules.”

OK, how do they convert non-fossil energy into fossil fuel equivalents??

This chart provides the conversion factor.

An efficiency factor of 0.4 means that nuclear, hydro, solar, wind, biofuels and other renewables are made to look much larger than they really are by a factor of 2.5 in the following chart.

It suggests we are making good progress at replacing fossil with renewable energy, and that with a bit more effort we can convert all fossil energy to renewable electricity.

As is common in energy discussions today, reality differs from what is presented. The following chart shows electricity production by source.

Notice that total world electricity consumption for 2022, which of course must equal production, is 28,660Twh. Yet the above chart for energy consumption by source shows that nuclear, hydro, solar, wind and other renewables are by themselves 11,100Twh. 

If we divide non-fossil electricity consumed by the 2.5 efficiency factor we get 11,740Twh which is close to the correct amount of non-fossil electricity produced. I say close because the energy from non-fossil sources adds up to 641Twh more than that shown on the electricity production chart, so this extra energy must be used for some other purpose, but has still been treated as 2.5 times more efficient.

From the above chart we see 10,212Twh of electricity from coal and 6,443Twh of electricity from gas, and we can calculate how much of the total oil and gas production was used for electricity by multiplying by 2.5.

From the 44,854Twh of total world coal consumption we used 25,525Twh for electricity, and 19,329Twh for other purposes. Likewise for the 39,412Twh of total world gas consumption we used 16,107Twh for electricity and 23,305Twh for other purposes.

With oil we only produced 904Twh of electricity. Assuming the same 40% efficiency for oil as coal and gas, then only 2,260Twh of oil was used for electricty and 50,710Twh was used for other purposes.

We can now complete the following table and use it for assessing how our energy transition is going.

Total primary energy production is 134,313Twh of which wind and solar contribute 3,408Twh or 2.5%.

Electricity is 21.3% of total energy, and fossil fuels produces 61.3% of electricity.

Only 8.2% of total energy comes from nuclear, hydro, solar, wind, and other renewables, and the remaining 91.8% comes from fossil fuels and traditional biomass.

The following chart illustrates this graphically. Blue is all non-electricity energy, orange is electricity from fossil fuels, and grey is electricity from all other sources.

The world is currently trying to replace fossil fuel produced electricity (orange) with electricity from nuclear, hydro, solar, wind and other ‘sustainable’ methods (grey). It is not possible to manufacture, install, or maintain more ‘sustainable’ energy (grey) without fossil fuels. Even the newest mines and factories require fossil fuels in many forms.

There is no plan for the non-electricity portion of energy (blue).

Let’s now consider how fossil fuel and traditional biomass use has changed over time. Are we getting anywhere?

Traditional Biomass was 100% of energy used, according to Our World in Data (OWiD), until coal started to be used in the year 1800 at 1.7% of total energy. Interestingly, they attribute no energy to water power, wind (sails), or animals, perhaps because they were too small or hard to measure.

Fossil Fuels (FF) and Traditional Biomass (TB) contributed 100% of total energy until 1920 when Hydro contributed 1%.

The contribution of FF and TB to total energy changed as follows:

  • <1920 100%
  • 1920 99%
  • 1940 99.2%
  • 1960 98.4%
  • 1980 97.6%
  • 1990 95.2%
  • 2000 94.4%
  • 2010 94.3%
  • 2020 92.1%
  • 2022 91.8%

Most energy analyses lump TB in the mix without paying much attention to the size of its contribution. At 11,111Twh, as measured by OWiD, TB is a larger source of energy than nuclear, hydro, wind, solar and biofuels combined! TB is not going to be replaced by any other type of energy. Most energy analyses place TB on the other side of the ledger from FF, when in fact TB should be added to the FF side, as it is burnt and adds to greenhouse gasses.

The following chart shows the total contribution of energy from non-FF or TB, with columns 1-4 representing the period 1990-2020, and column 5 is what is ‘expected’ to happen by 2050.

We can see how little decarbonization progress we have made over the last 30 years, and the extraordinary progress we expect to make over the next 26 years, towards achieving our climate goals.

Now let’s consider fossil energy used as feedstock for products, and high heat applications.

There are around 1,100 million tonnes of coking coal mined, 700 million tonnes of oil products, plus vast quantities of gas (I couldn’t find the quantity of gas used as feedstock for products or high heat applications) to make 430 million tonnes of plastics, 240 million tonnes of ammonia (fertilizer), 160 million tonnes of asphalt, plus huge amounts of high end heat for cement and steel production, and hundreds of other products and high heat applications.

OWiD does not provide data on energy used for product feedstocks, or high heat, or normal heating, or transportation, or agriculture, or mining. It’s a huge weakness in all energy calculations.

Product feedstocks, by themselves, are a huge gap in our plan for an electricity only future. A world based on renewables would have to make these products from captured carbon, because there is no unused biomass, and we cannot increase our use of biomass without causing significant further damage to the natural world that sustains us. Only if we were willing to decimate remaining forests could we replace fossil fuel products with biomass, especially as world food demand is expected to go up by 60-70% by 2050 according to the FAO.

The only example of using renewable energy to create synthetic fuel, which is the base for all fossil fuel products, is the Haru Oni plant in Southern Chile. It has a 3.4Mw Siemens Gamesa wind turbine with an expected 70% capacity factor producing an expected 20,848Mwh of electricity per year. The first ‘commercial’ (sic) shipment of e-fuels was just sent 11 months after beginning operation, and 8 months after declaring commercial operations, of 24,600 litres. That is a process efficiency of only 1.77%, assuming an annual production of 36,900 litres, without considering the energy expended in the capital ($US75M), or operating and maintenance costs (unknown or not released).

Assuming we had to make ‘products’ from this process, replacing the Coking Coal 1.1Bt = roughly 7,700Twh, plus approximately 10% of a barrel of oil (using all liquids), another 6,205Twh, the raw energy needed from renewables to do this at a 1.77% efficiency rate would be 785,000Twh, or nearly 5 times current annual energy production from all sources!!

This is before adding the energy needed to mine, process, manufacture, and transport the materials required to build it all!!

It’s a ridiculous idea.

Considering I didn’t include the products from natural gas, or any capital, operating, or maintenance costs, and even assuming significant improvements in efficiency, it’s not even close to being possible.

One final calculation to further expose the mirage.

To make the products from renewable energy, with a Haru Oni type efficiency, would require over 1.8B tonnes of copper for the energy production side of the operation, based on 5 tonnes per Mwh of a solar power plant, and over 5 hrs/day of sunshine. This would consume 100% of our current copper production for about 80 years.

Modern civilization is a complex system. It has systems within systems, and a complexity far too high for anyone to understand as a whole. Our discussions and plans for continuing modern civilization after changing from fossil to renewable energy usually concentrate on one minor part of the overall system. It’s the only way to get an answer that looks plausible.

When multiple feedback loops are considered, it becomes obvious that we do not have the energy nor materials to keep modern civilization going for all. Unless of course, the real plan is to retain modern civilization for only a very small portion of humanity, much smaller than present…

February 15, 2024

Rob here, there are many interesting comments by Hideaway below that expand on his energy and materials analysis.

I found one comment particularly interesting because it introduced Hideaway’s background and the life path that led him to his current clear-eyed view of our overshoot predicament.

I’ve copied that comment here for better visibility.

I first learnt about limits to growth in 1975 in my first year of an Environmental Studies course. I’ve been studying and researching everything about energy and resources for decades. My wife and I moved to the country 40 years ago onto a block of land and started farming.

I was the state secretary of an organic farming group and on the certifying committee over 30 years ago. Virtually all organic, biodynamic, permaculture, regenerative properties I came across had similar characteristics. The profitable ones used lots of off property resources, which I argued was unsustainable, because of diesel use etc. I left the organic movement, also decades ago, because there was nothing really sustainable about it.

I was a believer in a renewable future for decades, always believing it was only a matter of time until they became better and cheaper than fossil fuels, which were clearly depleting. I had an accident 15 years ago, and since then have had way more time to do research than just about anyone. I really got stuck into working out how mines could go ‘green’ until I just couldn’t make the numbers work. (BTW I also had some economics and geology in my tertiary studies, but have learnt way more on both subjects in the last 15 years).

Eventually I reluctantly did my own calculations on EROEI because I just couldn’t find anything with an unbiased approach that came close to making sense. I’ve been against nuclear for decades, mainly because of humanities failure to deal with wastes and the nuclear bombs we create, so I very reluctantly calculated the EROEI using my method and was stunned at the results.

I use to be a believer in the 100:1 EROEI that everyone in favor of nuclear constantly states (before I worked it out for myself). The reality is nothing like that, it’s pitiful worse than solar and wind, which instantly made me realise that modern civilization is not sustainable any any way, shape or form.

I also kept checking the numbers I calculated for Saudi oil and a small gas project in WA. Sure enough these came to the rough numbers we need for modernity, but of course fossil fuels are leaving us due to depletion, they are a dead end anyway, even before we consider climate issues.

All my work, over years, has given me a point of reference for when the world as we know it is in real trouble. It’s when the oil extraction decline accelerates to the downside. Everything runs on oil, especially farming and mining and heavy transport. The world falls to pieces without any of these, once they struggle to get the diesel/bunker fuel they need, collapse is baked in. A date of when? no idea, but suspect we will know by higher oil prices and a failure to respond with greater oil production, then the next year a further decline in oil production, while oil prices remain high etc.

Not even coal can save modernity, the EROEI is too low. Even if we went on a massive Coal to Liquids campaign, the energy return for the cost is way too low. When coal was last king we had approximately a 70% rural population even in the west, now we have multiples of the overall population, mostly in cities, and badly degraded agricultural land.

By marromai: Post Peak Everything

Today’s guest post by German speaking marromai contemplates the implications of peak everything caused by energy depletion and concludes the coming collapse will be rapid, harsh, and permanent. Other essays by marromai can be found here.

Following is an edited excerpt from “A Book for no One” by Stefan Gruber that discusses the so called “tipping points” worked out by David Korowicz of Feasta and concludes “Peak Everything” in the near future:

Systems have the tendency to increase their degree of complexity more and more and thus to become more and more susceptible to collapse by the smallest triggers. This is true for any chaos-mathematical system, for any physical system and, of course, for civilization. Every self-organizing system needs energy to be kept away from the chaotic state.

The replacement of human labor by the production of fossil fuels led to the fact that less and less humans were needed to produce food more and more cheaply, to mine metals and of course to extract fossil fuels themselves. Wealth increased exponentially – as did the population of Homo sapiens – and the labor force became increasingly differentiated and redirected into higher-skilled fields to meet people’s increased consumption needs, which in turn relied on the use of fossil fuels, other raw materials, and innovation.

Initially, in any self-organizing system that runs out of fuel, synergy occurs to compensate for the loss of cheap energy (globalization; outsourcing of production tools from companies), which further increases complexity. After that, the highly interconnected structures collapse.

But how can a fully mature civilization collapse worldwide? To understand this, we must familiarize ourselves a little more deeply with dynamic systems and the so-called “tipping point” and relate this to the raw material robbery and the compulsion for permanent economic growth of a system built on exponential credit growth. The true extent of the catastrophe will then reveal itself unvarnished.

The geophysicist Heribert Genreith calculated the life span of our system solely based on the debt based money view, according to which there will be a sustainable GDP decline from 2009 and a destruction of values until 2024, with subsequent hyperinflation until 2030 and the catastrophic finale (GDP exit) until 2034. In his forecast, which is supported by pure mathematics, however, he leaves out the most serious and destructive factor “peak everything“, which we will come to in a moment. It is this factor that will throw the system out of its orderly course during a global economic crisis and destroy civilization as we know it. To back this up scientifically and in terms of systems theory, we recommend reading the overview by the “Foundation for the Economics of Sustainability”, or “Feasta” for short, the essay by an international think tank based in Ireland, entitled “Tipping Point“:

We are trying to solve problems within the same systems that are responsible for creating them and that only exacerbate those problems. Moreover, we are locked and trapped in these systems. […] But these systems are far too complicated and too interconnected to fully understand their function. Managing these systems in a way that would allow for controlled shrinkage while maintaining our prosperity is not possible. There is no path to sustainable or planned decline. […] The conclusion of this report is that a decline in energy will almost certainly initiate a series of processes, at the end of which will be the collapse of our civilization. We are close to a point where world oil production will decline or may have already reached that point (peak oil). Our civilizational structure reacts unstably to a withdrawal of energy. In all likelihood, our globally interconnected civilization is on the verge of a surprisingly rapid and imminent collapse.

Oil is the foundation of our economic system and at the same time the bloodstream of civilization. It is taken for granted as a source of energy that simply exists to drive the debt-based global economic ponzi scheme – also understood and included by this think tank – and thus “economic growth”. It is subject, like all commodities, to “Jevons’ paradox“, which in economics is understood to be an observation by William Stanley Jevons “according to which technological progress that allows the more efficient use of a commodity ultimately leads to increased use of that commodity rather than decreased use. In a broader sense, this is now referred to as the rebound effect.”

We observe this effect in other areas, too: The world’s oceans have already had their “peak fish” for decades. Ever more brutal methods are used to fish at ever greater depths, with the help of ever more energy-intensive technology and with ever more unwanted by-catch to satisfy the demand for the last fish. The extinction of species is proceeding at a gigantic pace. The widespread use of pesticides and genetically modified plants is already having its first effects, and the extremely environmentally damaging mining of industrial metals (aluminum, copper, nickel, etc.) will reach its peak in a few decades, but in reality, will already become unprofitable before then due to peak oil. Whereas in the 19th century, for example, copper nuggets weighing tons were still lying around on the earth’s surface, today people are digging for the metal in kilometer-wide and hundreds of meter-deep pits to extract the metal from the stone through chemical processing, in which it is often only found in the order of per mill. So the more metal that is mined – and this yield must increase steadily to maintain our debt backed monetary system – the less copper per ton is found in new mines. This makes mining even more energy intensive and expensive, and it has been shown to be along an exponential curve – the less metal per ton, the exponentially more oil is needed to extract it.

The same phenomenon is taking place with oil itself. The largest oil reserves were already pumped dry in the 1970s. Today, oil is pumped out of the ground using increasingly costly methods (which in turn require oil), and although the price of oil is rising inexorably, there is no longer any increase in production, no matter how refined and expensive the method of oil production or how high its price, because there is simply less and less oil distributed over an ever larger area and no new large oil fields have been found for decades. And the more the oil runs out and the more its price rises with it, the more expensive the mining of industrial metals becomes, which in turn additionally reach their peak in a few decades.

So these processes are based on feedbacks and they build each other up. The same phenomenon can be observed with the technology metals (indium, gallium, germanium, etc.) and the rare earths, which are not only approaching their peak in a few decades, but are also becoming increasingly expensive due to peak oil.

Peak oil is followed by peak water: Scientists estimate that by 2030, due to population growth alone we will need about 30 percent more water, 40 percent more energy and 50 percent more food (while at the same time arable land will become scarce). How is this to be accomplished when the only cheap energy that has been available to us across the board for the past several decades is rapidly running out? Peak water” will be followed by “peak food”, which is already close to its maximum because of climate change and will be completely stifled by rising oil prices. Substitutes for oil are not in sight. High-quality coal had already peaked 20 years ago, even low-quality coal will peak in the foreseeable future, and the so-called “renewable energies” could substitute oil demand to a large extent in the most optimistic case, but only under the assumption of an immense consumption of raw materials to produce these technologies.

One cannot simply take away the cheap energy source from an overpopulated, highly complex world that grew on the foundation of cheap energy and replace it with a more expensive one because, after all, cheap energy was the cause of overpopulation and complexity in the first place. So if no miracle happens in the next few years in the search for cheap energy or in the development of new technologies, one has to agree with the conclusion of Donella and Dennis Meadows and Jorgen Randers in their book “Limits to Growth – The 30-Year Update: Signal to Change Course”: a continuation of “business as usual” will lead to collapse from the year 2030.

Everything is striving towards the magic point “Peak Everything“, which of course will be the final nail in the coffin for the debt based economic system, if it does not perish by itself before then. And of course, already before “Peak Everything” the global commodity wars will break out, and the motives will of course be underpinned with ethical arguments – there will be little to read about commodity wars in the system media.

In the so-called ‘developed’ regions, there will be no more ‘growth’; in fact, the development will be the reverse. Constant economic growth will be replaced in the future by perpetual economic recession. How will the industrialized countries react to this enormous challenge? These peoples will experience that they are in a permanent state of siege, in which the material living conditions will be as modest as during the two world wars. The modest way of life during the wars was temporary, but the future one will be permanent and increasingly serious. A small consolation for the present and future generations, because one thing should be clear by now: The world’s population has also peaked, and like any exponential curve, as cynical and horrible as it may sound, it will collapse along with “Peak Everything” – to about one billion people. In the medium term, humanity will fall back to the level of the Neolithic Age.

———

The following is copied from discussions in the yellow forum (a German economic forum). It illustrates what may happen post peak everything during collapse and what effective prepping may look like.

Q: Why should our highly complex society not “only” be thrown back to the development level of the 16th century?

A: This is just not possible. Where are the tools of the 16th century?
Where are the robust but low-yielding seeds of the 16th century?
Where are the cows of the 16th century? Small-framed, robust, calving unassisted because the offspring are not uterus-bursting high-yielding cattle?

All that is no longer there. Instead, we have corn rootworm, fire blight, Colorado potato beetle and other pests that were unknown in the 16th century.

Where are the 30 people per square kilometer of the 16th century?
How many do we have today? Around 250.

No one is going to push aside some humus and use a pickaxe to mine coal or ores anymore. These resources are gone, no longer extractable without large-scale industrial material and energy input.

Economic reconstruction, by the way, goes the same way as energy consumption: No energy, no recovery.

Nobody will found a city at the sea anymore and reach a population density of 100 persons per square kilometer, thanks to fishing like in the antiquity.

The shoals of fish for this are also gone and will be for our lifetime.

Even if we still hurriedly forge everything possible to plows: Where are the oxen?

Even if we plow the fields with human power: Where is the non-F1 hybrid seed for next year’s harvest?

(Comment by another person)
I do not want to criticize these views. Unfortunately, I find too few discussions here that are constructively positioned and deal with the will to survive inherent in every human being, which historically proves that after every system collapse, reconstruction has taken place, resulting in a better living situation than before the crisis.

Good then a constructive approach: What does man need to survive?

Man dies after:

  • 3 minutes without air
  • 3 days without water
  • 3 weeks without food
  • 3 hours without shelter (in a snowstorm without special equipment)

Air:
We have plenty. But what about this in the event of a crisis?
When solvents, detergents and chemical precursors of all kinds are stored in countless tanks and plants as a result of an economic crash and these rust away merrily.

What about the decay ponds of nuclear power plants when the water supply fails and the freshly burned fuel rods ignite themselves after a few weeks?
Not to be extinguished and with consequences in the dimension of Chernobyl.

Where is the fire department in the collapse when whole areas full of low-energy Styrofoam pressboard wood façade houses are in flames for whatever reason?

Or the parched meadow of farmer Horst in midsummer bursts into flames due to a discarded glass bottle?

Water:
We have plenty. But … is it drinkable?
In many areas, even if one should succeed in reactivating one of the wells, which had to become deeper and deeper due to the falling water levels, the groundwater is no longer drinkable.

Be it because of agriculture, be it because after WWII the bomb craters were filled up with used oil drums, paint cans and similar debris and today no politician dares to tear away the corporation (and major employer of the region) that was created on it, to clean up the contaminated site.

Not to speak of the dozens of “pits” and embankments in each municipality, which were used as garbage dumps, whose positions are well known thanks to measuring helicopters, but no one dares to touch them, because otherwise the municipalities would be immediately broke.

Streams and rivers? Full of sewage from overflowing house pits, failing municipal sewage treatment plants, unmaintained oil separators from gas stations?

Food:
Huge problem in the worst case. Today, 10 calories of oil are in every calorie of food. Without oil, there is no food. The oil does not even need to “run out”. It is enough if we can no longer afford it or if the producing countries simply do not want to or can no longer supply it.

Or the transport routes fail, the farmers go broke, the freighters no longer run, the JIT logistics fail, etc.

The greatest danger: On the one hand, hunger does not kill immediately (i.e. the hungry person goes in search) and on the other hand, the stomach then takes control of its evolutionary-biological protuberance (aka. brain).

This offers plenty of room for scenarios, nature shows how little squeamish “hungry people” deal with each other without stockpiling.

The only consolation is that if we are going to have an abundance of one resource in the crisis, it will be “long pig”.

Accommodation:
The small cottage with garden in the wasteland, in it the stove rumbling away, a sign of civilization in a dehumanized world, a source of warmth and life energy, the small dream of every serious “prepper” and “survivalist”, on it delicious chicken soup from own chickens…

In short, a gigantic target, visible from afar thanks to a column of smoke and smellable for miles in the wasteland, attracts uninvited guests like flies and they will usually outnumber you and most likely be better armed. The owner of the oven could well end up as a “long pig” in that oven.

Are you happy now with this constructive approach?

If you don’t have any obligations, you might want to get a shotgun ready, one shot is enough. Probably better than being beaten to death in the fight for the last edibles.

This time we get Game Over… in all aspects, not only monetarily. The main problem is a caloric one, we can print money like hay … but not hay, nor potatoes, and not a drop of oil.

By marromai: Energy, economy and the role of money

There was a nice surprise in my inbox this morning.

Marromai, a frequent visitor from Germany, having tired of seeing the same un-Denial post for 10 weeks, wrote an excellent essay to freshen things up. Thank you.

See also another essay by marromai here.

We all use and need money every day and would often like to have more of it. The vast majority of people don’t really understand what money actually is. Many think it is a medium of exchange that was invented at some point to facilitate commerce – which couldn’t be more wrong.

Readers of this and similar websites at least know that it must be more than that, and that money is connected to energy in some way. Naked Emperor summed this up the other day with a reference to Dr. Tim Morgan’s Surplus Energy Economics:

Dr. Morgan believes that there are two parallel economies. One is “the underlying ‘real’ or physical economy of products and services” and the other is a “financial economy of money and credit.” “Money has no intrinsic value, but possesses value only in relation to the material things for which it can be exchanged.”

https://nakedemperor.substack.com/p/the-everything-bubble-the-end-of

His article somehow anticipates the conclusion of this essay and describes very well why the divergence between ever-expanding, artificially inflated finance and shrinking real economy will soon lead to a pretty big bang. But an interesting point for me – and maybe for you too? – is how did our financial system emerge in the first place? What exactly is money and how did it become a proxy for energy?

I will try to describe that below, also to better understand it myself – feel free to ask questions or write your critique in the comments. My findings, which I try to summarize in my own words, come mainly from “Ein Buch für Keinen” (A Book for None) by Stefan Gruber which in turn is based on an economic theory called “Debitism” according to German economist Paul C. Martin.

In advance, we must be clear that all life forms known to us are dissipative systems. Every living being is condemned to accumulate energy to maintain itself, irreversibly increasing its complexity and thus entropy. If it cannot collect more energy than its body needs to sustain itself, it dies. A simple basic equation: life requires energy. This is the primordial debt that every living thing owes itself and that it must pay off if it does not want to perish. The crucial thing is that this debt must be paid in time (hunger) to escape the sanction (death). If food (energy) was always and everywhere available, this would be an insignificant automatic action. Only the pressure of a deadline in combination with scarcity and effort to procure measures a value to the debt. This definition will be important later.

Now let’s look at mankind, which for a long time lived in nomadic hunter-gatherer groups and more or less unconsciously paid off its primordial debt, like all other animals. At some point in history, due to external pressures such as depleted hunting grounds or changing climatic conditions, it transitioned to both nomadic pastoral tribes, which learned to raise animals and move with them when a region was grazed off, and permanently sedentary, arable land societies. Tribal societies don’t know or use money, since they produce everything they need on their own and share it among each other. This is called a subsistence economy.

An arable tribe has the great disadvantage of no longer being regionally flexible – its sedentariness was a weakness that made it vulnerable to raids by nomadic pastoral tribes who could rob its earned and stored supplies (stored energy to pay the primordial debt). However, the predatory pastoral tribes soon discovered that a peasant tribe could be raided and wiped out only once. But if it is “offered protection” from other nomads in return for a tribute in the form of the food it produces, this is to the advantage of both (more to the advantage of the herdsmen than the farmers, of course). The shepherd tribe arises as guardians and rulers over the peasants (“The Lord is my shepherd”), promising protection and demanding tributes in return to maintain and expand their power.

Only after the ruler specified the levy, which had to be paid on a date, this levy became a commodity in demand and thus money. And it became the yardstick for the valuation of all other goods. The levy, i.e. money, was a commodity and with this commodity the debt to the authorities was repaid.

The first taxes were paid in kind, e.g. grain (energy to service the original debt) – later, when empires and complexity grew, they were put in parity with silver for the sake of simplicity (e.g. 180 barley grains = 1 shekel of silver in Mesopotamia). After that, weapons metal, i.e. copper, tin and later iron were declared to be levies. Also gold counted at first as weapon metal, because it was easy to work. Whether money is in kind, or metal to produce weapons, or today’s colorfully printed paper slips, is completely irrelevant. Money is, what is defined as levy by the ruling power. It does not need to have an intrinsic value.

The decisive factor for the emergence of money was therefore the simultaneous emergence of a power cycle: the levy could be used to buy mercenaries to maintain power. The mercenaries exchanged the levy for goods and services from the population. The people in turn were able to pay tribute to the ruler, which further strengthened the ruler’s power. But the ruling power had the problem of having to make expenditures in advance. Naturally, it tries to recover this deficit with the demanded levies, whereby it has to expand and increase its power. Whereupon it needs more levies to maintain itself – maybe that looks familiar to you? (A dissipative system)

Since not everyone was always able to produce the required amount of levy goods by the deadline, the subjects were forced to trade among themselves – thus division of labor and specialization developed. While some focused on the cultivation of food, others produced tools for the peasants or weapons for the rulers, for which they received the coveted levy in return, in order to pay off their debt to the ruler. Those who had no other option had to offer their labor (debt bondage, day laborers,…). Individuals in an economy based on the division of labor are practically forced to conclude contracts with others or to fulfil these contracts in order to obtain the required levy and to survive.

By the way, the invention of writing is – not as some people think – due to the preservation of knowledge – but to bookkeeping, as Babylonian cuneiform writings prove. It was a system for documenting the taxes already paid by the subjects. On small clay tablets it was recorded who had paid what amount of tax, which then was used instead of the levy itself – an early form of money without intrinsic value.

The ruler is ultimately the owner of his realm, which is the area he can protect and demarcate from others by force of arms. But he can cede his property, i.e. share it, by granting the subjects the right to private property and defending it against opponents with his military power. The subject can manage the property guaranteed to him by the ruler and trade with it and its proceeds to be able to pay the tribute. And, very important, he can lend on his property to obtain credit. However, if he remains in debt, the subordinate is punished, or his property is foreclosed.

Those who submit and agree to the rules (forcibly set by the ruler) to maintain the status quo are part of that state(!). Those who do not want to belong are left to their own devices without any rights and were thus doomed to death in the past – today statelessness is no longer even conceivable.

The described processes of the emergence of states, money and economy were the initial sparks for today’s global trade economy, which is still based on the assurance of property by the central powers. We see that state, property, money and economy form an indissoluble mesh and a state is always based on the exercise of power and the compulsion to pay a levy. A state can therefore never be based on voluntariness of all participants. Today, more than ever, it is clearly visible that the state apparatus must inevitably become ever larger and more inefficient and, in the final analysis, serves only self-preservation and not its inhabitants. Like any dissipative system, it will vanish someday – this is by the way, the reason why there are so many collapsed civilizations in history and ours will be no exception.

But the trigger for the economic dynamics in a ruling system – from the destruction of a moneyless solidarity community to a highly specialized society based on the division of labor with compulsory trade and individual liability – is solely the pressure to pay the levy to the state on time. The means to pay off this tax debt is money. Money therefore always documents a debt. First, the tax debt to the rulers and, building on this, the contract debt between private individuals. So money is only a debt repayment vehicle. If money exists, a debt must exist at the same time, which can be erased with this money. Money receives its value only by the underlying debt contract, it cannot have an “intrinsic value” detached from a terminally fixed debt.

With this description, the definition of money is suddenly very clear:

Money (usually uncountable, plural monies or moneys): A legally or socially binding conceptual contract of entitlement to wealth, void of intrinsic value, payable for all debts and taxes, and regulated in supply.

Here we close our circle to the primordial debt mentioned above. Only the obligation to surrender a commodity earned by performance to the state at the deadline in order to escape a sanction defines money and gives it a value. Without a deadline there would be no reason to generate money, and without scarcity at the deadline, it would be worthless. It must always be earned first by doing work. Money is a debt, which has to be repaid at a certain point in the future by doing work before that time has come.

To do work means energy must flow. As power is a measure of energy per unit of time, money is therefore actually a measure of power and thus more directly linked to energy than most people can imagine. So, it is absolutely true that energy drives the economy. How fortunate that we discovered fossil fuels, developed combustion engines, etc., to accelerate economic activity, technological progress, and trade exponentially. Fossil energy made our economy grow fast and big.

Our credit-based finance system made it possible to create money which is solely based on the promise to perform work, in order to be able to take advantage of it immediately or to start new economic activity with it. When the modern world started to decouple the financial system from the real economy, the problems began. And this is where it gets ugly: In order to provide the promised future work, energy will be needed. But because far too much credit was granted without taking into account the energy that will actually be available, a Ponzi scheme was kicked off with nothing but empty promises on future energy. The worldwide fantasy amounts of money are no longer matched by any economic output that can be provided in realistic terms – financial collapse is pre-programmed and with it collapses any economic activity driven by energy. At present, attempts are being made to conceal and delay this by all means.

We have bought with lazy money a claim on future energy and have already squandered everything today. When the fossil energy is depleted we will be left with much worthless money.

Our dissipative system aka “modern civilization” will soon not be able to pay off its primordial debt.

I hope that when the world ends, I can breathe a sigh of relief because there will be so much to look forward to.1

P.S. Since we have seen that every state, economy and money are based on oppression and force, all possible future states will be no exception. I see a backfall to small tribal solidary communities as the most promising concept for humanity to survive the coming hardship.

1From “Ein Buch für Keinen” (A book for no one) by Stefan Gruber. The bible of nihilism: How economic, ideological, social, biological and physical systems emerge and why they are doomed to fail. I would recommend this as a must read, but unfortunately, this masterpiece is only available in German.

By Monk: Why not nuclear?

Today’s post is by frequent un-Denial visitor and friend Monk who does a wonderful job of explaining why nuclear energy is not a useful response to overshoot.

With increasing energy prices and sanctions on Russia, people are once again considering how we can power the global industrial machine with significantly less oil and gas. Alongside this, environmentalists are getting more savvy in spotting the critical problems with the likes of wind and solar and other green hopium nonsense (green hydrogen anyone?). But for some reason, many people struggle to make the final step and admit that nuclear is not going to save us from peak oil and / or climate change.

In this article, I would like to briefly layout what I see as the high-level problems with nuclear. This is just a summary of my own personal reasons for why I’m not convinced. It is by no means a thorough technical analysis!

What I’d like us to consider is this: is it DENIAL stopping our smart and critical thinkers from admitting the problems with nuclear? People who do become aware of the problems with our system tend to jump to nuclear as a last bastion of hope. Modern commentators like to tell themselves nice stories about nuclear. This prevents them from having to seriously consider energy collapse. How often have you heard these affirmations?

  • Nuclear energy is cheap
  • Nuclear energy is safe
  • Nuclear energy is clean and green
  • Nuclear energy is a low carbon energy source
  • Nuclear energy can meet our energy needs when fossil fuels run out (peak oil)
  • New innovations will make nuclear energy better, such as micro plants, newer generations, sustained fusion etc.

We shouldn’t just believe in nuclear like it’s a fairy godmother who is going to save us from our poor energy planning. We should thoroughly interrogate claims about nuclear through the lenses of environment, energy, economy, and safety.

Nuclear energy may have a negative energy return

If we accept money (currency) as a proxy for energy units, then it is pretty clear that nuclear plants are incredibly energy expensive to plan, build, maintain, and decommission. Nuclear plants are some of the most expensive projects undertaken. The capital costs are horrendous. What that should tell you is it takes a shed load of energy just to build a nuclear power plant.

To see if this upfront energy spend is worth it, we need to see how much energy we get back. Utility providers will look at costs as a ‘cost per electricity unit’. If you compare nuclear to other electricity sources, you are spending a lot more to get nuclear. Here is an example of that type of comparison looking at just the capital cost per kilowatt:

TypeCapital cost per kilowatt (kW)
Nuclear$7,675 to $12,500
Coal plant$3,000 to $8,400
Gas combined$700 to $1,300

Source (well worth a read): https://world-nuclear.org/information-library/economic-aspects/economics-of-nuclear-power.aspx

By the time we factor in all the other costs associated with nuclear – that other electricity generation doesn’t have – I’m not convinced nuclear is generating a net return at all. If that’s true (I’m happy to be wrong), you might ask why countries continue to build them? A few possibilities include:

  • Accepting burning existing fossil fuels now to get longer lasting consistent electricity in the future.
  • To support ongoing research.
  • To support the military.

I often hear pro-nuclear people talk about how much energy we can get from such a small volume of uranium. I think that is disingenuous considering all the energy we have to burn in setting up a plant before we even get a single unit of energy from uranium. 

Please note that net energy studies are notoriously difficult, because it’s up to the researcher how much of the supply chain and lifecycle they factor in. That’s why I find looking at currency a useful way to approximate EROEI (energy returned on energy invested). Of course, the nuclear industry will say they generate a very positive EROEI. Here’s a good example with references: https://world-nuclear.org/information-library/energy-and-the-environment/energy-return-on-investment.aspx. However, academic “meta-analysis of EROI values for nuclear energy suggests a mean EROI of about 14:1 (n of 33 from 15 publications)” (Hall et al., 2014) NB this was looking at traditional nuclear only.

Nuclear produces electricity, not liquid energy, not coal, and not gas  

Our predicament is not one of electricity, but of diesel, natural gas, and coal. These are critical energy and resource sources that cannot be replaced by electricity (or at least not with a positive energy return). A couple of simple examples:

  • We can’t make silicon wafers or industrial steel without coal.
  • We can’t move stuff around or dig it out of the ground without diesel.
  • We also have the issue that the world vehicle fleet is already built and requires petrol or diesel for the most part. There are no longer enough minerals left to build an entirely new electric vehicle fleet – a fact that surprising few anti-car new urbanist types are unaware of.
  • Natural gas provides us with nitrogen fertilizer (essential for feeding billions of people in the modern agricultural system) and plastics with many uses.

Another challenge is that if nuclear was to replace all energy from fossil fuels, we would need a better way to store excess energy. Although nothing like the intermittency problems of wind and solar, nuclear has a related type of problem in that it likes to always be running and producing a steady-ish amount of electricity. Currently this doesn’t matter where nuclear is part of the total energy mix, but if it were the bulk of the energy mix, storage would become a major consideration. There are a whole lot of issues with electricity storage that have been well-explained in the issues with wind and solar, namely finite amount of materials to build batteries, expense, and battery storage capacity.

One potential upside of nuclear energy could be to replace natural gas as the main electricity generator that balances out wind and solar intermittency. But due to the costs of nuclear compared to gas this hasn’t been done. Moreover, gas generation is preferred because it is easier to switch off and on. 

Nuclear is entirely dependent on fossil fuels

A nuclear power plant could not even be built without fossil fuels:

  • Coal to make the steel
  • Diesel to mine the uranium
  • Diesel to mine the sand for concrete
  • Diesel to mine the copper to make the electric components
  • Gas to make the plastics for componentry and systems
  • Gas to make the food to feed the workers
  • I could go on and make this a very long list, but hopefully you get the point.

Because building a nuclear power plant is impossible without fossil fuels, that also means we will not build new nuclear power plants after the end of oil. Just like wind turbines and solar panels cannot make more of themselves, neither can a nuclear reactor.  

Nuclear is not zero emissions

Obviously to build a nuclear power plant you are going to need a lot of diesel-powered plant and equipment. There is also concrete to factor in, which is a massive emissions source, accounting for approximately 8% of total global emissions.

With all those fossil fuels going into making a nuclear power plant, it should be obvious that nuclear is not and will never be net “zero emissions”. The focus on operating or tailpipe emissions is pointless when you’re still making an overall net positive addition to emissions. And arguably the world already has more than enough electricity, so building nuclear is possibly a complete waste of emissions.

Inputs to nuclear power plants are also reaching peak

As the capital costs suggest, nuclear energy plants are massive construction projects. They require vast raw materials – all of which have their own supply limitations. It is not just oil that is reaching peak, but many other raw inputs from copper to even boring old sand. Yes, peak sand is a thing. If you look at a picture of a nuclear plant, you’ll see a lot of concrete. That is sand! Concrete also requires other raw materials including calcium, silicon, iron, and aluminium. Is there even enough sand left in the world to build enough nuclear power plants to meet our energy needs? And the concrete needs will still be there for a hypothetical fusion plant, or any such other “innovative” nuclear power generation.

The story is the same for any other rare (or getting rare) earth element. There’s approximately 17 years left of zinc, 21 for silver, 35 for nickel and 64 for cobalt. Even if these numbers are wrong, it still shows that physical limits are approaching. This provides a real limit to the number of nuclear plants that it is even feasible to build. Moreover, if our system is going to rely on more electrified plant and equipment, these minerals will run out much sooner.

Uranium is finite

It’s kind of ironic that some people see nuclear as a solution to peak oil when the actual feed for nuclear is also reaching peak. How much proven uranium reserves are out there is hotly debated. Really, I don’t care because if there’s 10 years left or 100 years, it’s the same result – our industrial system runs out of power. Apparently, proven uranium reserves would last 90 years at the current rate of use (Murphy., 2021 he has lots of references).

What we can know for certain is that uranium will peak at some point and then reach a diminishing point of return where it is no longer economically viable to get it out of the ground. Bear in mind, most (some?) of the value in mining it is for weapons – with electricity just being the side gig!

Uranium is often in hard-to-get areas (including Russia, now embargoed). We can’t mine the uranium out of the ground once we run out of diesel, which would put the end of uranium to 40 years, not 90. The only hopium here is to hope they’ll invent some amazing electricity-powered mining plant and equipment, but then we are back to the peak mineral problem. For now, we are stuck with diesel and the associated carbon emissions.

Environmental considerations

Making nuclear power plants degrades the environment. This includes:

  • Mining all the materials required.
  • Burning all the diesel, gas, and coal in the manufacturing and construction phases.
  • Building all the roads and parking required for the plant.
  • And polluting the environment for hundreds of thousands of years with radioactive material that causes birth defects, genetic degradation, cancer, and death.

Michael Dowd regularly asks us to contend with the question of radioactive waste. What right do we present day humans have to pollute the world for thousands of years, just so we can run another dishwasher? It is highly likely that some, if not most, nuclear reactors will meltdown, because they will not have been safely decommissioned due to peak oil production. What an inheritance for our descendants, if we have any left!

What do we do with the waste?

Nuclear waste is incredibly dangerous to human health and the environment. Waste can also be utilised by terrorists (or bad state actors) to create a dirty bomb. So based on these problems, we need to be very careful where and how we store the waste. Not surprisingly, this is another thing humans seem determined to f-up. For starters, a lot is stored at or near sea level – great for getting water to keep it cool – not so great when you get a sea-based disaster. Sea water corrodes infrastructure at a faster rate, increasing the likelihood of failure of the waste containment. Plus, what happens with rising sea levels from climate change?

When digging more into this topic, you’ll see humans are running out of places to put this waste and the costs of waste-storage projects are increasing. This makes it less likely that a company will be 100% focussed on quality for a capex project that generates no returns.

Alice Friedemann has argued that burying nuclear waste should be a top priority, as after peak oil production, oil will be rationed to agriculture and other essential services. Spent fuel from nuclear lasts a very long time. According to Archer (2008): “… there are components of nuclear material that have a long lifetime, such as the isotopes plutonium 239 (24,000 year half-life), thorium 230 (80,000 years), and iodine 129 (15.7 million years). Ideally, these substances must be stored and isolated from reaching ground water until they decay, but the lifetimes are so immense that it is hard to believe or to prove that this can be done”.

Once the containment for nuclear waste starts to degrade, the waste can leak into ground water, contaminating drinking water and getting into the food system. Where waste gets into the ocean, the currents can travel it all over the globe. This is happening in our lifetime, forget about a thousand years from now.

Are nuclear plants really safe?

Taken at face value statistically, nuclear plants are very safe. But I think this is a sneaky statistic because this is old data from when nuclear plants were young and well-resourced. We really don’t know how the safety stats will hold up as the plants age out. Once they are over 40 years old, the risk of disaster is much higher. This risk is heightened by very old systems and componentry and the specialised nuclear workforce retiring and not being replaced.

Many nuclear plants are built close to the sea, exposing them to natural risks including sea level rise, tsunamis, typhons / hurricanes, and erosion. Near misses are surprisingly common, often a result of human error and the just mentioned old systems. There is evidence that significant near misses are underreported officially, leading to misconceptions about the safety risks posed.  

There have been two major nuclear power plant disasters that I’m sure you are familiar with. The first is the 1986 meltdown at Chernobyl where a design flaw, triggered ironically by a safety test, led to a reactor meltdown. The second was the 2011 Fukushima disaster, where an earthquake-triggered tsunami damaged the emergency diesel generators, leading to a loss of electric power. By the way, look there’s another essential use of fossil fuels in operating nuclear plants!

Here are two minor anecdotes to show you the environmental outcomes. Following the Chernobyl disaster, a farm in Scotland had all their new-born lambs born without eyes and they had to be culled. As a result of Fukushima, across the Pacific, there is plenty of scientific evidence of radioactive contamination in fish and shellfish – tasty!

When we look at total confirmed human deaths from these nuclear incidents, we are looking at around 100 people. Total deaths from COVID-19 thus far is around 6.6 million. So how can we say nuclear is unsafe? Well, what the official incident deaths don’t tell us is how many people are dying from cancers years after a nuclear incident. Moreover, there’s little incentive for a government to try and track each death that could be attributable to a nuclear disaster – that will only make them look bad. Considering nuclear waste is toxic for 100,000s of years, we can’t even account for the untold future suffering of humans and non-humans.

Maybe the initial risks of nuclear have been overstated, but what would happen if most or all of them failed? For example, a risk that you barely ever hear mentioned is if multiple reactors were hit by an EMP or solar flare? If the grid is wrecked, so are the nuclear reactors. Maybe that might never happen, but it does seem likely that most plants won’t be properly decommissioned (due to peak oil), which will see most of them melting down over this century.

Terrorism

Nuclear plants are a target for terrorism and potentially could be used to inflict massive damage to people and the environment. From Alice Friedemann: Plutonium waste needs to be kept away from future terrorists and dictators for the next 30,000 years. But world-wide there’s 490 metric tons of separated plutonium at military and civilian sites, enough to make more than 60,000 nuclear weapons. Plutonium and highly enriched uranium are located at over 100 civilian reactor plants. In addition, there’s 1,400 tons of highly enriched uranium world-wide.  A crude nuclear bomb can be made from as little as 40 to 60 kilograms of U-235, or roughly 28,000 nuclear bombs.

Decommissioning is fraught with challenges

Decommissioning is essential as once plants age out, they become too radioactive and are likely to decay. You would then get a full or partial meltdown. Like everything else to do with nuclear, decommissioning too is a very expensive and lengthy process, often exceeding budgets. Decommissioning also requires experienced nuclear engineers who are retiring. Younger engineers no longer see nuclear as a viable career path, so the next generation of skilled nuclear workers is not there. As the nuclear plants reach the end of their design life, it will get harder and more expensive to safely decommission them. And when has a large corporate ever been good at cleaning up after itself?! Moreover, us poor taxpayers will be increasingly impoverished by peak oil economic destruction, leaving governments with less funds to pick up after the energy companies.

We might ask, where is the proof that decommissioning is happening currently and where are the government budgets put aside for decommissioning? Countries like France and the USA are also delaying decommissioning plants at the moment, possibly worried about electricity shortages and unwilling to take another source offline.

As citizens, why should we support the building of new nuclear plants when there’s barely any proof that the current ones are being safely dealt with at their end of their life?

Financial problems

Investors are not keen on nuclear power projects. They have a habit of blowing out budgets and timelines and failing to return investment (a big clue that they are negative EROEI). There’s also a bit of a wait of 7 to 10+ years for project completion before you can even hope to start seeing a financial return. Remember the cost of construction is only ever going to get more expensive now due to peak oil. Oh, and there are uninsurable liabilities!  

Governments often need to invest in electricity infrastructure, and especially for nuclear, to make up this shortfall in private investment. Citizens quite rightly should demand proof that nuclear plants are worth spending energy on. They should demand Governments provide detailed risk management against all the criteria we’ve just discussed. Because nuclear is not popular with the average citizen, democratic governments are increasingly unwilling to invest in nuclear. Moreover, governments are encouraged by their populations to keep electricity prices affordable. Wind and solar are much more popular and tend to get more of the subsidies. They have also damaged the profitability of nuclear with wind and solar going first to sell to market (government policy in parts of Europe).

Replacing fossil fuels with nuclear energy is a pipe dream

In a 2019 Forbes article, Roger Pielke ran a thought experiment on how many nuclear plants the world would need to get to the 2050 net zero goal. “To achieve net-zero carbon dioxide emissions by 2050, the world would need to deploy 3 [brand new] nuclear plants worth of carbon-free energy every two days, starting tomorrow and continuing to 2050. At the same time, a nuclear plant’s worth of fossil fuels would need to be decommissioned every day, starting tomorrow and continuing to 2050.”

We can already see that this just isn’t happening, and for the reasons laid out in this article it’s clear this can never happen. It looks like 2022 saw just 53 nuclear reactors under construction world-wide – that’s not finished by the way, just in some stage of construction.

But what about innovation

Honestly each ‘innovation’ to nuclear reactors could be an article all on its own. I have to confess I have a lazy heuristic: I just write off all of these as nonsense and don’t really give them fair consideration. But if I had to provide a high-level critic, this would be it. I have just noted the additional problems with these “innovations” – they still have all the same problems described elsewhere:

  • Fusion – The gold standard of hopium. As the idiom goes, sustained fusion is just 20 years in the future and always will be. 
  • Breeder reactors – Recycling costs more energy than you get back. Also, more expensive than regular reactors, which are already too expensive.
  • New generation – Less safe and more toxic (go ask Alice).
  • Thorium – Perhaps it could have worked but looks like it’s too expensive now. That’s a good hint it would be negative EROEI. Might not be viable in reality.
  • And this goes for lots of things: just because something is feasible in a lab situation or theoretically possible, does not mean it will ever be a viable solution. You can do a lot if you have oodles of energy and billions of dollars to waste. We might ask, is indulging the fantasies of scientists really a good use of our last remaining surplus resources?

Well, that’s bleak, what does the future of electricity look like

Humans already have access to more electricity than we ever imagined 100 years ago. If we had a stable or reducing population (shout out to Rob), then we wouldn’t even need to worry about bringing on new electricity generation.

Categorically all forms of electricity generation have their negative drawbacks. Eventually, all the hydroelectric dams will silt up – this can take hundreds of years – and finally they will all fail. Wind turbines last for 30 years, though in reality production efficiency reduces much earlier. Coastal wind turbines will decay after 10 years due to erosion from salt water. Solar panels will last 30+ years, but the associated systems and batteries to collect and store the electricity fail much sooner and need replacement parts. Nuclear plants last for a design life of 40+ years minimum and then should be decommissioned over the following 20 years. With natural gas shortages due to the Russian Invasion, countries are delaying decommissioning their plants. Most western nuclear is aged out.

Humans could continue to produce electricity by burning coal and natural gas. There are approximately 400 years left of coal and 150 years left of natural gas. But (and it’s a big but), there is only 40 years left of oil (BP Statistical Review). Without oil we don’t have diesel powered equipment, which will make it all but impossible to extract coal and natural gas. Without coal, we can’t make industrial wind turbines, solar panels, or nuclear reactors.

What this means is that by the year 2060, we are looking at a world with much less electricity production and eventually moving to almost zero electricity as the hydro dams fail in the coming centuries – and no we can’t build new ones of scale without diesel. Perhaps some smart individuals can maintain rudimentary electricity where they live, but the days of large electric grids are numbered.

By the way, if you do want to dive into the technical details, I can point you in the direction of plenty of useful references. Just let me know 😊

Two Different Perspectives – Same Conclusion: Modern Lifestyles Will End Soon

Dr. Berndt Warm’s Perspective

Thanks to Marromai for finding this new paper by physicist Dr. Berndt Warm.

Dr. Warm uses 5 different methods, 4 relying on economics, and 1 on thermodynamics, to predict when the end of oil production and motor vehicle production will occur. All 5 methods roughly converge on 2030 as the year when modern lifestyles end.

The essay was written in German and translated to English which explains any awkward phrasing.

Warm’s conclusion agrees with my 15 years of study of many different sources which converge on oil production being down by about 50% in 2030. Because our current system requires growth not to collapse, it is plausible that predicting a 50% decline is the same as predicting a 100% decline.

Our world is of course far too complex to make precise predictions, and unexpected events like a pandemic or nuclear war can dramatically change the outcome, however for planning purposes it seems reasonable to assume we have about 5 years left to prepare for a new way of life.

Abstract

Evaluation of five data sets concerning car production, oil prices converted in energy values gives lifespan approximations for the car industry and the oil industry. The result is that the car industry will last only until 2027 and the oil industry some years more.

Here are a few excerpts from the paper:

The author interprets the line of maxima as the oil price that the industrialized countries can afford to the maximum while maintaining their lifestyle. He interprets the line of minima as the price of oil that the producing countries need to keep their economies running. In mid-2019, the author noticed this crossroads and expected a crisis in 2020, although he was completely unclear what kind of crisis it would be. He didn’t expect Corona.

The inhabitants of the industrialized countries are now realizing that their lifestyle is at risk. The line of the maxima will reach the zero line (0%BOE) around mid-2027. From then on, the inhabitants of the industrialized countries can no longer afford oil without giving up many things of daily life. The demand of the oil producers is then 13-14 %BOE. These two values are incompatible.

Result: The extrapolation of oil prices shows that from 2022 the lifestyle in the industrialized countries will degrade, and that after 2027 the inhabitants of the industrialized countries will hardly be able to pay for oil or its products.

The fall in the price of crude oil from 2008 to 2020 with the extreme price increase since 2021 is an absolute alarm signal! Soon there will be no more crude oil affordable, no matter for which economy in the world!

Summary

Procedures 1, 2 and 4 are extrapolations of economic data of the past. Method 3 is a link between oil prices and car production. Method 5 is a calculation based on a law of physics.

The five calculation methods result in:

  1. End of world motor vehicle production between 2031 and 2034.
  2. End of oil production in 2027.
  3. End of worldwide sales of motor vehicles in 2027.
  4. End of German vehicle production in 2027.
  5. End of oil production in 2029.

The results are not the same, but in the end the same thing comes out. All five procedures show that vehicle production and oil production will continue to collapse in the coming years. Vehicle production will disappear first. Oil production later, as the world’s existing fleet will continue to consume crude oil, even if no new vehicles are added. It is to be expected, that the crude oil production will decrease slowly until 2027, and after that very fast.

And: Oil will be extremely expensive by 2027 at the latest!

Dr. Simon Michaux’s Perspective

For those still hoping that a transition to non-fossil energy will extend our modern lifestyles, I point you to the following recent work of mining engineer Dr. Simon Michaux which shows our planet has insufficient affordable resources to implement an energy transition plan that maintains our current lifestyles.

The quantity of metal required to make just one generation of renewable tech units to replace fossil fuels, is much larger than first thought. Current mining production of these metals is not even close to meeting demand. Current reported mineral reserves are also not enough in size. Most concerning is copper as one of the flagged shortfalls. Exploration for more at required volumes will be difficult, with this seminar addressing these issues.

Simon Michaux is an Associate Professor of Geometallurgy at the Geological Survey of Finland in the Circular Economy Solutions Unit. Holding a Bachelor of Applied Science degree in Physics and Geology and a PhD in Mining Engineering from the University of Queensland, Simon has extensive experience in mining research and development, circular economic principles, industrial recycling, and mineral intelligence. Through his recent publications, Simon has outlined the many challenges facing the global industrial ecosystem. He notes our world is currently energy and minerals blind and transitioning to renewable energies is not as straightforward as it appears.

We’ve been growing without care to planetary limits for too long and change is coming, whether we like it or not. We need a completely new energy paradigm to address the challenges ahead, and as Simon says, it all starts with a conversation. We cover a lot of ground in this one, so grab a notebook and strap in for an important conversation – this is one you’ll want to listen to more than once.

On this episode, we meet with Associate Professor of Geometallurgy at the Geological Survey of Finland, Dr. Simon Michaux. Why do humans ignore important mineral and material limits that will affect human futures? Dr. Michaux reveals how we are “minerals blind” — and the consequences of this myopia. To shed light on the effects of our minerals blindness, Dr. Michaux explores the disconnect between experts in renewable energy and economic and government leaders. Dr. Michaux offers individual strategies for us to overcome our energy and minerals blindness. How can we learn to adapt in order to overcome the coming challenges?

Dr. Simon Michaux is an Associate Professor of Geometallurgy at the Geological Survey of Finland. He has a PhD in mining engineering. Dr. Michaux’s long-term work is on societal transformation toward a circular economy.

BenjaminTheDonkey’s Perspective

BenjaminTheDonkey today nicely captures a common theme I observe everywhere in the world today: We are collectively losing our minds; perhaps because unpleasant realities are overwhelming the denial circuit in our brains?

Alarmist? 


The powers that be won’t admit

We’re heading straight to our obit; 

So it isn’t strange we

Can already see

People are losing their shit. 

 

What is its cause at the root? 

Whom might we persecute?

From an objective view,

It’s logically true 

The reason is just overshoot.

By Bill Rees: On the Virtues of Self-Delusion—or maybe not!

Dr. Bill Rees, Professor Emeritus from the University of British Columbia, gave a presentation on our overshoot predicament earlier this month to a zoom meeting of the Canadian Association for the Club of Rome (CACOR).

I’m a longtime fan of Dr. Rees and consider him to be one of the most aware and knowledgeable people on the planet.

This is, I believe, the best talk I’ve seen by Dr. Rees and he covers all of the important issues, including topics like overpopulation that most of his peers avoid.

Presentations like this will probably not change our trajectory but nevertheless I find some comfort knowing there are a few other people thinking about the same issues. This can be a very lonely space.

The Q&A is also very good. I found it interesting to hear how much effort Dr. Rees has made to educate our leaders about what we should be doing to reduce future suffering. He was frank that no one to date, including the Green party, is open to his message. Not surprising, but sad. Also inspiring that someone of his stature is at least trying.

Summary

Climate-change and other environmental organizations urge governments to act decisively/rapidly to decarbonize the economy and halt further development of fossil fuel reserves. These demands arguably betray:

– ignorance of the role of energy in the modern economy;

– ill-justified confidence in society’s ability to transition to 100% green renewable energy;

– no appreciation of the ecological consequences of attempting to do so and;

– little understanding of the social implications.

Without questioning the need to abandon fossil fuels, I will argue that the dream of a smooth energy transition is little more than a comforting shared illusion. Moreover, even if it were possible it would not solve climate change and would exacerbate the real existential threat facing society, namely overshoot.

I then explore some of the consequences and implications of (the necessary) abandonment of fossil fuels in the absence of adequate substitutes, and how governments and MTI society should be responding to these unspoken biophysical realities.

Biography

Dr. William Rees is a population ecologist, ecological economist, Professor Emeritus, and former Director of the University of British Columbia’s School of Community and Regional Planning.

His academic research focuses on the biophysical prerequisites for sustainability. This focus led to co-development (with his graduate students) of ecological footprint analysis, a quantitative tool that shows definitively that the human enterprise is in dysfunctional overshoot. (We would need five Earth-like planets to support just the present world population sustainably with existing technologies at North American material standards.)

Frustrated by political unresponsiveness to worsening indicators, Dr. Rees also studies the biological and psycho-cognitive barriers to environmentally rational behavior and policies. He has authored hundreds of peer reviewed and popular articles on these topics. Dr. Rees is a Fellow of Royal Society of Canada and also a Fellow of the Post-Carbon Institute; a founding member and former President of the Canadian Society for Ecological Economics; a founding Director of the OneEarth Initiative; and a Director of The Real Green New Deal. He was a full member of the Club of Rome from 2013 until 2018. His international awards include the Boulding Memorial Award in Ecological Economics, the Herman Daly Award in Ecological Economics and a Blue Planet Prize (jointly with his former student, Dr. Mathis Wackernagel).

I left the following comment on YouTube:

I’m a fellow British Columbian and longtime admirer of Dr. Rees. Thank you for the excellent presentation.

I agree with Dr. Rees’ prescription for what needs to be done but I think there’s a step that must precede his first step of acknowledging our overshoot predicament.

Given the magnitude and many dimensions of our predicament an obvious question is why do so few people see it?

I found a theory by Dr. Ajit Varki that provides a plausible explanation, and answers other important questions about our unique species.

The Mind Over Reality Transition (MORT) theory posits that the human species with its uniquely powerful intelligence exists because it evolved to deny unpleasant realities.

If true, this implies that the first step to any positive meaningful change must be to acknowledge our tendency to deny unpleasant realities.

Varki explains his theory here:

https://link.springer.com/chapter/10.1007%2F978-3-030-25466-7_6

A nice video summary by Varki is here:

https://www.youtube.com/watch?v=dqgYqW2Kgkg

My interpretations of the theory are here:
https://un-denial.com/denial-2/theory-short/

https://un-denial.com/2015/11/12/undenial-manifesto-energy-and-denial/

By Andrew Nikiforuk: Energy Dead-Ends: Green Lies, Climate Change and Chaotic Transitions

Canadian author and journalist Andrew Nikiforuk addressed our overshoot reality on November 17, 2021 at the University of Victoria.

It’s a brilliant must watch talk that touches on every important issue, except unfortunately Ajit Varki’s MORT theory and our genetic tendency to deny unpleasant realities. Nikiforuk does acknowledge that denial is an important force in our predicament.

It’s refreshing to find a journalist that understands what’s going on and that speaks plainly about what we must do.

Nikiforuk introduced a new idea (for me), the “technological imperium”:

…our biggest problem is a self-augmenting, ever-expanding technosphere, which has but one rule: to grow at any cost and build technological artifacts that efficiently dominate human affairs and the biosphere. The technological imperium consumes energy and materials in order to replace all natural systems with artificial ones dependent on high energy inputs and unmanageable complexity.

Nikiforuk seems to be implying that technology is the core problem and is driving the bus. Maybe. I think more likely advanced technology emerges as a consequence of unique intelligence (explained by MORT) coupled with fortuitous buried fossil energy, driven by a desire for infinite economic growth that arises from evolved behaviors expressing the Maximum Power Principle (MPP), all enabled by our genetic tendency to deny unpleasant realities, which causes us to ignore the costs of growth and technology. Regardless of which is the chicken and which is the egg, Nikiforuk is correct that technology has made our society very fragile, and is harming our social fabric.

An example Nikiforuk provided of the technological imperium is British Columbia’s trend of replacing sustainable natural salmon runs in rivers with fish farms that are totally dependent on non-renewable fossil energy and advanced technology. I’ve witnessed this first hand on the coast of Vancouver Island and it makes me sick to my stomach. I also witnessed how hard it is to oppose the technological imperium when a political party here was elected on a promise to close fish farms and then reneged after being elected.

As an aside, the technological imperium idea gave me a new insight into the covid mass psychosis of most rich countries and their obsession with a single high tech “solution” to covid while aggressively opposing all other less energy intensive, less risky, and lower tech responses.  

Nikiforuk began his talk with a quote I like from C.S. Lewis:

If you look for truth, you may find comfort in the end; if you look for comfort you will not get either comfort or truth, only soft soap and wishful thinking to begin, and in the end, despair.

I observe sadly that this must watch video has only 160 views, 3 of which are mine. 😦

Here are a few other ideas and quotes I captured while watching the talk:

  • “We have all but destroyed this once salubrious planet as a life support system in fewer than 200 years mainly by making thermodynamic whoopee with fossil fuels.” – Kurt Vonnegut
  • “Our political class is in a complete state of denial and will not act until things get much worse. You can expect more blah blah blah.”
  • “Energy spending determines greenhouse gas emissions. We only want to talk about emissions, we need to talk about energy spending.”
  • “We must contract the global economy by at least 40%.”
  • “We can choose a managed energy decent, something few civilizations have ever achieved, or we can face collapse.”
  • “People who do not face the truth turn themselves into monsters”. – James Baldwin
  • “In sum, expect extreme volatility and political unrest in the years ahead along with atmospheric rivers, heat domes, and burning forests.”
  • “We are now at revolutionary levels of inequality everywhere.”
  • “We are being fed 5 green lies because we do not want to discuss economic growth and population:
    • dematerialize the economy;
    • direct air capture;
    • carbon capture and storage;
    • hydrogen;
    • electric cars.”
  • “I must not fear. Fear is the mind-killer. Fear is the little-death that brings total obliteration. I will face my fear. I will permit it to pass over me and through me. And when it has gone past I will turn the inner eye to see its path. Where the fear has gone there will be nothing. Only I will remain.” – Frank Herbert
  • Conversations we avoid or deny:
    • Population
      • “There is no problem on earth that does not become easier to manage with fewer people. We don’t want to admit this, we don’t want to talk about this.”
      • We are currently using up the renewable resources of 1.7 earths and unless things change we’ll need 3 earths by 2050.
    • Energy Blindness
      • Our energy is so cheap and convenient it has blinded us to its true ecological, political, and social costs.
      • “Energy has always been the basis of cultural complexity and it always will be.” – Joseph Tainter
      • A single tomato today requires 10 tablespoons of diesel to grow it.
    • The Technosphere
      • An energy dissipating superorganism that destroys natural systems and replaces them with artificial systems dependent on high energy technologies.
        • Wild salmon running in rivers are replaced with fish farms.
        • Wetlands are replaced with water filtration projects.
        • Old growth forests are replaced with tree plantations.
      • Technology is to this civilization what the catholic church was to 14th century France, the dominant institution that controls every aspect of your life.
      • “A major fact of our present civilization is that more and more sin becomes collective, and the individual is forced to participate in collective sin.” – Jacques Ellul
      • “A low energy policy allows for a wide choice of lifestyles and cultures. If on the other hand a society opts for high energy spending its social relations must be dictated by technocracy and will be equally degrading whether labelled capitalist or socialist.” – Ivan Illich
    • Civilizations Do Collapse
      • Life is a cycle, it is not a linear path.
      • We have peaked and are now entering a phase of incredible volatility.
      • Every citizen needs to know the consequences of bad policy. Percent death on the Titanic by class was:
        • 39% first class
        • 58% second class
        • 76% steerage
  • What should you do with this awareness?
    • Withdraw from the fray of the Technosphere.
    • Do something to help preserve the natural world.
    • Get your hands dirty doing real work in nature.
    • Insist that creation has a value beyond utility.
      • “Think, less” – Wendell Berry
    • Build refuges and prepare for the storms ahead.
    • Wake each morning and ask yourself what you can give to this world rather than what you can take.
  • Comments and answers from the Q&A:
    • “The worst thing about the pandemic was that so many people and so many children were forced to spend so much time with colonizing machines.”
    • “We have to get a political conversation going about contracting the economy.” This won’t happen at the central government level but might happen within individual communities.
    • “Chance favors the prepared mind.”
    • “The only way we can get out of this mess without sacrificing millions and millions of people is to power down.”

Two weeks later, Nikiforuk reflected on his talk and responded to questions:

https://thetyee.ca/Analysis/2021/12/06/Andrew-Nikiforuk-Getting-Real-About-Our-Crises/

Two weeks ago, I gave a talk at the University of Victoria arguing that our morally bankrupt civilization is chasing dead ends when it comes to climate change and energy spending.

I argued that by focusing on emissions, we have failed to acknowledge economic and population growth as the primary driver of those emissions along with the unrestrained consumption of natural systems that support all life.

I added that people plus affluence plus technology make a deadly algorithm that is now paving our road to collective ruin.

As Ronald Wright noted in his book A Short History of Progress, civilization is a pyramid scheme that depends on cancerous rates of growth.

I also explained that many so-called green technologies including renewables, hydrogen and carbon capture and storage are not big solutions. Because they require rare earth minerals and fossil fuels for their production and maintenance, these technologies shift problems around.

In addition these green technologies cannot be scaled up in time to cut emissions or require too much energy to make any difference at all.

I also emphasized that our biggest problem is a self-augmenting, ever-expanding technosphere, which has but one rule: to grow at any cost and build technological artifacts that efficiently dominate human affairs and the biosphere. The technological imperium consumes energy and materials in order to replace all natural systems with artificial ones dependent on high energy inputs and unmanageable complexity.

This technological assault on the biosphere and our consciousness has greatly weakened our capacity to pay attention to what matters, let alone how to think. The result is a highly polarized and anxious society that can’t imagine its own collapse let alone the hazards of its own destructive thinking.

The best response to this constellation of emergencies is to actively shrink the technosphere and radically reduce economic growth and energy spending. Our political class can’t imagine such a conversation.

At the same time, communities and families must re-localize their lives, disconnect from the global machine and actively work to restore degraded ecosystems such as old-growth forests. Anyone who expects an “easy fix” or convenient set of solutions has spent too much time being conditioned by digital machines.

My cheerful talk generated scores of questions. There wasn’t time to answer them, so I selected five representative queries submitted via Zoom in the interest of keeping this heretical conversation going.

Growth in population tied to consumption is a big problem

Many listeners expressed disquiet about population growth being an essential part of the problem. “I am disappointed that once again Malthus has entered the room when the difference between per capita emissions for GHGs between the Global North and Global South are significant. Isn’t it how we live not how many of us there are?” asked one.

The real answer is uncomfortable. How we live and consume matters just as much as the growing density of our numbers combined with the proliferation of our machines that devour energy on our behalf. (Roads and cell phones all consume energy and materials too.) All three demographic issues are increasing at unsustainable rates and feed each other to propel more economic growth, more emissions and more fragility.

The world’s current population is 7.9 billion and grows by 80 million a year. It has slowed down in recent years because the affluent don’t need the energy of children as much as the poor. Even so civilization will add another billion to the planet every dozen years. Redistributing energy wealth (and emissions) from the rich to the poor will not avert disaster if human populations don’t overall decline.

Our numbers also reflect a demographic anomaly that began with fossil fuels, a cheap energy source that served as Viagra for the species. Prior to our discovery of fossil fuels, the population of the planet never exceeded one billion. Our excessive numbers are purely a temporary artifact of cheap energy spending and all that it entails — everything from fertilizer to modern medicine.

Isn’t capitalism the real threat?

Many questions revolved around the nature of capitalism. “Wouldn’t it be more accurate to denounce the capitalist organization of technology rather than technology as such for problems like polarization and fragmentation?”

No, it would not. Technology emphasizes growth and concentrates power regardless of the ideology.

Capitalism, like socialism and communism, is simply a way to use energy to create technologies that structure society in homogeneous ways. Removing capitalism from the equation would not change the totalitarian nature of technology itself. Or the ability of technologies to colonize local cultures anywhere.

Every ideology on Earth, to date, has used technologies to strengthen their grip on power by enmeshing their citizens in complexity and reducing humanity to a series of efficiencies. All have supported digital infrastructure to monitor and survey their citizens. As the sociologist Jacques Ellul noted long ago ideologies don’t count in the face of technological imperative.

What comes next?

Many listeners asked if “there is a sequel to the energy-rich market economy?” I have no crystal ball but here is my response.

There will always be some kind of sequel and it is not written. But there is no replacement for cheap fossil fuels and their density and portability. They made our complex civilization what it is. As fossil fuel resources become ever more expensive and difficult to extract (a reality the media ignores), the “rich market economy” will experience more volatility, inequality, disruptions, corruption and inflation. It is rare for any civilization to manage an energy descent without violence let alone grace.

“Can you say more about the connection between the technosphere and totalitarian societies?” asked one listener. “How do you see connections between dictatorships and the technosphere?”

This is a subject for a much longer essay. The technosphere, by definition, offers only one system of thinking and operating (triumph of technique over all endeavors) and has been eroding human freedoms for decades. It simply creates dependents or inmates. Social influencers now tell its residents what to buy and how to behave. As such the technosphere has become an all-encompassing environment for citizens whether they be so-called democracies or totalitarian societies.

The major difference between the two is simply the degree to which techniques have been applied to give the state more total control over its citizens. In both democratic societies and totalitarian ones, technical elites actively mine citizens for data so that information can be used to engineer, monitor and survey the behavior of their anxious and unhappy citizens in a technological society. (You can’t live in a technological society without becoming an abstraction.) The Chinese state does not hide its intentions; the West still clings to its illusions of freedom.

The technosphere corrupts language

One listener wanted to know “more about the empty language” employed by the technosphere as I mentioned in my talk.

Just as the technosphere has replaced bird song with digital beeps, the technological imperium has increasingly replaced meaningful language with techno-speak.

A world dominated by reductionist and mechanistic thinking has produced its own Lego-like language completely divorced from natural reality. Decades ago the German linguist Uwe Poerksen called this new evolving language “plastic words.”

They include words like environment, process, organization, structure, development, identity and care. All can be effortlessly combined to convey bullshit: “the development of the environment with care is a process.” This modular language creates its own tyranny of meaningless expression.

Experts, technicians, politicians and futurists employ this plastic language to baffle, confuse and obfuscate. Poerksen notes these words are pregnant with money, lack historical dimension and refer to no local or special place. This language, divorced from all context, does to thinking what a bulldozer does to a forest. It flattens it.

Hope is not a pill you take in the morning or a crumb left at the table

Last but not least many listeners asked how do we maintain hope in the face of so many emergencies, abuses and appalling political leadership?

“How do you get up in the morning?” typically asked one.

This frequent question confounds and puzzles me. My humble job as a journalist is not to peddle soft soap or cheerlead for ideologies and futurists. My job is not to manufacture hope let alone consent. I have achieved something small if I can help readers differentiate between what matters and what doesn’t and highlight the power implications in between.

Yet in a technological society most everyone seeks an easy, canned message pointing to a bright future. I cannot in good conscience tell anyone, let alone my own children, that the days ahead will be happy or bright ones. To everything there is a season and our civilization has now, step by step, entered a season of discord and chaos. History moves like life itself in a cycle of birth, life, death and renewal.

Jacques Ellul, who wrote prophetically about the inherent dangers of technological society, also addressed the need for authentic hope because it does not reside in the technosphere. The technosphere, a sterile prison, may promise to design your future with plastic words, but what it really offers is the antithesis of hope.

Ellul, a radical Christian, wrote deeply much about hope and freedom. He noted that hope never abandons people who care about a place and are rooted outside the technosphere for they will always know what to do by their real connection to real things. He adds that hope cannot be divorced from the virtues of faith and love. Like all virtues they must be quietly lived, not daily signalled.

For Ellul, hope was a combination of vigilant expectation, prayer and realism. “Freedom is the ethical expression of the person who hopes,” he once wrote.

Hope is living fully in a place you care about and acting against the abuse of power every day. Hope, in other words, is using every initiative “to restore the possibility of people making their own decisions.”

P.S. This talk inspired me to make my first donation to a news source, The Tyee, for which in 2010 Nikiforuk became its first writer in residence.

Take us to DEFCON 1

The US military defines its Defense Readiness Condition (DEFCON) levels as follows:

  • DEFCON 5 is normal readiness.
  • DEFCON 4 is above normal readiness.
  • DEFCON 3 is the air force ready to mobilize in 15 minutes.
  • DEFCON 2 is all forces ready to fight in 6 hours.
  • DEFCON 1 is the maximum state of readiness and means nuclear war is imminent or has already started.

I have my own definitions that I use for my personal life.

I spent the first 50 years of my life at DEFCON level 5. That would be as a normal, fully in denial, culturally conforming, dopamine & status seeking, energy maximizing, member of a superorganism.

Then I had a stress related meltdown and while recovering stumbled on peak oil. After seeking and failing to find a good path forward other than population reduction, I wondered what else I was in denial about, and widened my field of view to include climate change, pollution, species extinction, unsustainable debt, etc., all of which I eventually came to understand are related and fall under the umbrella of human overshoot.

Now at DEFCON level 4, a realty based state of awareness, I began to think about making changes to my life, took a 6 month course on small scale farming, and did some volunteer work on a small organic farm.

Then the 2008 global financial crisis (GFC) occurred and I went to DEFCON level 3.

Confident that a collapse would occur within 10 years, I changed everything in my life. A new location where I’d be happy finishing my life, a simpler slower lifestyle, satisfying physical work, improved health, and thank goodness, Varki’s MORT theory to keep me sane with an explanation for the insanity all around me.

I also began to methodically plan and implement some preparations for a different world that I expected would arrive soon. The basic idea was to convert some retirement savings into things needed to survive and/or that might provide some joy in a harsher simpler world, and that won’t go bad, will never be cheaper, or better quality, or more available than today.

In hindsight I didn’t have a powerful enough imagination to predict that our leaders would loan into existence many trillions of dollars that can never possibly be repaid, to avoid having to acknowledge overshoot, and to extend and pretend business as usual a few extra years, at the expense of making our destination worse, but they did.

Then early in 2020 I saw the Chinese panicking over a virus before anyone here was discussing it, and I went to DEFCON level 2.

Now I got serious about completing most of my preps, which was an easy low stress exercise, because I already had a plan and simply had to execute it.

By the time the majority was scrambling, I was done, and completely calm and confident.

Today, two years into the pandemic, I’m seeing threats that have caused me to go to DEFCON level 1:

  • Many supply chains are broken and are getting worse, not better. This is a strong signal that our complex civilization is simplifying in unpredictable ways, as predicted by David Korowicz.
  • Energy shortages have emerged simultaneously in multiple strategically important regions. This is a big deal because fossil energy underpins everything our species depends on to survive. Net energy peaked a few years ago and we have been on a plateau made wider by unprecedented money printing, but once we fall over the edge I believe the decline will be much faster than the few percent per year that an unstressed geology and monetary system would deliver. I do not know if we’ve already fallen off the plateau, but I do know it will happen soon, and when it does, the changes will be profound, rapid, and painful. Regardless if the current energy problems prove to be temporary, they are a serious threat to an already fragile economy, civil society, and war-free world.
  • The Chinese economy is showing signs of stress from excess debt similar to the west’s 2008 GFC. Our vulnerability to a sick China is much greater than most assume because everything we depend on is dependent on Asian manufacturing, and a functioning global shipping system, and a functioning global banking system. This time I doubt more debt will fix an excess debt problem.
  • There are worrying signals that our vaccination policy is failing with health risks for both vaccinated and unvaccinated increasing, and that the boosters everyone is counting on may not work.
  • The leaders of the majority of countries seem incapable of absorbing and integrating evidence to improve their Covid strategy. If they are incapable of effectively managing Covid, we can be confident they will not be capable of managing the much more complex and profound implications of declining energy and the economic contraction it will cause.
  • All paths lead to food and we are 3 missed meals away from civil disorder. The climate seems to have shifted a gear this year and I expect this will negatively impact agricultural yields soon. Energy shortages will also negatively impact food production and distribution. As will supply chain problems. As will more Covid problems. As will a global economic depression.

DEFCON level 1 does not mean I’m expecting the end of the world, but it does mean I intend to complete everything I can think of to prepare for what I think is coming, on the assumption that we are near the end zone, and that by the time our arrival is confirmed, it will probably be too late to do anything.

There’s nothing wrong with being prepared a little early. Especially when being late means it may be impossible to prepare.

Chris Martenson is thinking along the same lines and recently produced an excellent video explaining what’s happening around the world with energy.

Reality Blind by Nate Hagens and DJ White

Nate Hagens has published a new book on the predicament that fossil energy consumption and depletion, and our denial of this reality, have created for life on this planet.

A skim suggests the book will be excellent and I hope to write a review after reading it.

I observe there is no mention of Varki’s Mind Over Reality Transition (MORT) theory which is sad because MORT provides an evolutionary foundation for the denial that Nate discusses, and explains why only one species has emerged with the intelligence to exploit fossil energy.

Denial of our genetic tendency to deny reality is apparently the strongest form of denial, even among the few of us that are aware of the human predicament.

You can read Nate’s book for free and purchase a copy here:

https://read.realityblind.world/view/975731937/i/

In case you missed it, this year’s annual Earth Day talk by Nate is on the same topic and is a masterpiece.

Tom Murphy’s back, yay!

Physicist Tom Murphy is one of the brightest and most articulate people in the overshoot awareness space.

A decade ago Murphy wrote frequently for a few years on his blog “Do the Math” where he explored the energy opportunities and constraints for powering our civilization. Then, having said what he wanted to say, he went silent.

Here is some of Murphy’s work that I’ve posted in the past which includes my all time favorite talk on limits to growth:

Today Murphy announced that he has published a new textbook titled “Energy and Human Ambitions on a Finite Planet” which can be downloaded for free.

https://dothemath.ucsd.edu/2021/03/textbook-debut/

After a long hiatus from teaching the general education energy course at UCSD—due mostly to a heavy administrative role for five years—I picked it up again for Winter quarter 2020. I had always been discontented when it came to textbook choices: my sense was that they tended to play it safe to avoid the risk of being provocative. But provocative may be what our situation calls for! I had been inspired by David MacKay’s fabulous and quantitatively rich Sustainability: Without the Hot Air, but its focus on the UK and not-quite-textbook format kept me from adopting it for the classroom.

So I set out to capture key elements of Do the Math in a textbook for the Winter 2020 class, following a somewhat similar trajectory: growth limits; fossil fuels and climate change; alternative energy capabilities and pros/cons; concluding with a dose of human factors and personal adaptation strategies.

Abstract

Where is humanity going? How realistic is a future of fusion and space colonies? What constraints are imposed by physics, by resource availability, and by human psychology? Are default expectations grounded in reality?

This textbook, written for a general-education audience, aims to address these questions without either the hype or the indifference typical of many books. The message throughout is that humanity faces a broad sweep of foundational problems as we inevitably transition away from fossil fuels and confront planetary limits in a host of unprecedented ways—a shift whose scale and probable rapidity offers little historical guidance.

Salvaging a decent future requires keen awareness, quantitative assessment, deliberate preventive action, and—above all—recognition that prevailing assumptions about human identity and destiny have been cruelly misshapen by the profoundly unsustainable trajectory of the last 150 years. The goal is to shake off unfounded and unexamined expectations, while elucidating the relevant physics and encouraging greater facility in quantitative reasoning.

After addressing limits to growth, population dynamics, uncooperative space environments, and the current fossil underpinnings of modern civilization, various sources of alternative energy are considered in detail— assessing how they stack up against each other, and which show the greatest potential. Following this is an exploration of systemic human impediments to effective and timely responses, capped by guidelines for individual adaptations resulting in reduced energy and material demands on the planet’s groaning capacity. Appendices provide refreshers on math and chemistry, as well as supplementary material of potential interest relating to cosmology, electric transportation, and an evolutionary perspective on humanity’s place in nature.

I skimmed the book to assess its tone. Murphy is trying to strike a balance between being honest about the difficulties we face, while not saying that civilization collapse is a certainty, and offers some constructive suggestions for how his young students might respond. It’s a similar (and understandable) strategy that Nate Hagens, another well known overshoot teacher has taken.

Here are a few excerpts filled with wise words from Murphy’s book:

19.1 No Master Plan

The “adults” of this world have not established a global plan for peace and prosperity. This has perhaps worked okay so far: a plan hasn’t been necessary. But as the world changes from an “empty” state in which humans were a small part of the planet with little influence to a new “full” regime where human impacts are many and global in scale, perhaps the “no plan” approach is the wrong framework going forward.

19.2 No Prospects for a Plan

Not only do we lack a plan for how to live within planetary limits, we may not even have the capacity to arrive at a consensus long-term plan. Even within a country, it can be hard to converge on a plan for alternative energy, a different economic model, a conservation plan for natural resources, and possibly even different political structures. These can represent extremely big changes. Political polarization leaves little room for united political action. The powerful and wealthy have little interest in substantial structural changes that may imperil their current status. And given peoples’ reluctance to embrace austerity and take personal responsibility for their actions, it is hard to understand why a politician in a democracy would feel much political pressure to make long-term decisions that may result in short-term hardship—real or perceived.

Globally, the prospects may be even worse: competition between countries stymies collective decision-making. The leaders of a country are charged with optimizing the prosperity of their own country—not that of the whole world, and even less Earth’s ecosystems. If a number of countries did act in the global interest, perhaps by voluntarily reducing their fossil fuel purchases in an effort to reduce global fossil fuel use, it stands to reason that other countries may take advantage of the resulting price drops to acquire more fossil fuels than they would have otherwise—defeating the original purpose. Then the participating countries will feel that they self-penalized for no good reason. Unless all relevant nations are on board and execute a plan, it will be hard to succeed at global initiatives. The great human experiment has never before faced this daunting a set of global, inter-related problems. The lack of a global authority to whom countries must answer may make global challenges almost impossible to mitigate. Right now, it is a free-for-all, sort-of like 200 kids lacking any adult supervision.

20.1 Awareness

How many people do you know who are concerned about a legitimate threat of collapse of our civilization? It is an extreme outcome, and one without modern precedent. It seems like a fringe, alarmist position that is uncomfortable to even talk about in respectable company. Yet the evidence on the ground points to many real concerns:

1. The earth has never had to accommodate 8 billion people at this level of resource demand;

2. Humankind has never run out of a resource as vital as fossil fuels;

3. Humans have never until now altered the atmosphere to the point of changing the planet’s thermal equilibrium;

4. We have never before witnessed species extinction at this rate, or seen such dramatic changes to wild spaces and to the ocean.

20.3.1 Overall Framing

In the absence of a major shift in public attitudes toward energy and resource usage, motivated individuals can control their own footprints via personal decisions. This can be a fraught landscape, as some people may try to out-woke each other and others will resist any notion of giving up freedoms or comforts—only exacerbated by a sense of righteous alienation from the “do-gooders.”

Some basic guidelines on effective adaptation:

1. Choose actions based on some analysis of impact: don’t bother with superficial stuff, even if it’s trendy.

2. Don’t simply follow a list of actions or impart a list on others: choose a more personalized adventure based on quantitative assessment.

3. Avoid showing off. It is almost better to treat personal actions as secrets. Others may simply notice those choices and ask about them, rather than you bringing them up.

4. Resist the impulse to ask: “what should I buy to signal that I’m environmentally responsible?” Consumerism and conspicuous consumption are a large part of the problem. Buying new stuff is perhaps counterproductive and may not be the best path.

5. Be flexible. Allow deviations. Rigid adherence makes life more difficult and might inconvenience others, which can be an unwelcome imposition. Such behavior makes your choices less palatable to others, and therefore less likely to be adopted or replicated.

6. Somewhat related to the last point, chill out a bit. Every corner of your life does not have to be perfect. We live in a deeply imperfect world, so that exercising a 30% footprint compared to average is pretty darned good, and not that much different than a “more perfect” 25%. Doing a few big things means more than doing a lot of little things that may drive you (and others) crazy.

7. In the end, it has to matter to you what you’re doing and why. It’s not for the benefit of others.

20.4 Values Shifts

In the end, a bold reformulation of the human approach to living on this planet will only succeed if societal values change from where they are now. Imagine if the following activities were frowned upon—found distasteful and against social norms:

1. keeping a house warm enough in winter to wear shorts inside;

2. keeping a house so cool in summer that people’s feet get cold;

3. having 5 cars in an oversized garage;

4. accumulating enough air miles to be in a special “elite” club;

5. taking frequent, long, hot showers;

6. using a clothes dryer during a non-rainy period;

7. having a constant stream of delivery vehicles arrive at the door;

8. a full waste bin each week marking high consumption;

9. having a high-energy-demand diet (frequent meat consumption);

10. upgrading a serviceable appliance, disposing of the old;

11. wasteful lighting.

At present, many of these activities connote success and are part of a culture of “conspicuous consumption.” If such things ran counter to the sensibilities of the community, the behaviors would no longer carry social value and would be abandoned. The social norms in some Scandinavian countries praise egalitarianism and find public displays of being “better” or of having more money/stuff to be in poor taste. Abandonment of consumerist norms could possibly work, but only if it stems from a genuine understanding of the negative consequences. If curtailment of resource-heavy activities is imposed by some authority or is otherwise reluctantly adopted, it will not be as likely to transform societal values.

20.6 Upshot on Strategies

No one can know what fate awaits us, or control the timing of whatever unfolds. But individuals can take matters into their own hands and adopt practices that are more likely to be compatible with a future defined by reduced resource availability. We can learn to communicate future concerns constructively, with out being required to paint an artificial picture of hope. Our actions and choices, even if not showcased, can serve as inspiration for others—or at least can be personally rewarding as an impactful adventure. Quantitative assessment of energy and resource demands empowers individuals to make personal choices carrying large impacts. Reductions of factors of 2 and 3 and 4 are not out of reach. Maybe the world does not need 18 TW to be happy. Maybe we don’t have to work so hard to maintain a peaceful and rewarding lifestyle once growth is not the driver. Maybe we can re-learn how to adapt to the seasons and be fulfilled by a more intimate connection with nature. The value of psychological preparedness should not underestimated. By staring unblinking into the abyss, we are ready to cope with disruption, should it come. And if it never does in our lifetimes, what loss do we really suffer if we have chosen our adventure and lived our personal values?

In this sense, the best adaptation comes in the form of a mental shift. Letting go of humanity’s self-image as a growth juggernaut, and finding an “off-ramp” to a more rewarding lifestyle in close partnership with nature is the main goal. Continuing the freeway metaphor, the current path has us hurtling forward to certain involuntary termination of growth (a dead end, or cliff, or brick wall), very probably resulting in overshoot and/or crash.

The guidelines provided in this chapter for quantifying and reducing resource demands then simply become the initial outward expressions of this fresh vision. Ignore the potentially counterproductive allure of fusion, teleportation, and warp drive. Embrace instead a humbler, slower, more feasible future that stresses natural harmony over conquest and celebrates life in all forms—while preserving and advancing the knowledge and understanding of the universe we have worked so hard to achieve. Picture a future citizen of this happier world looking back at the present age as embarrassingly misguided and inexplicably delusional. Earth is a partner, not a possession to be exploited. Figuratively throwing Earth under the bus precludes our own chances for long-term success. A common phrasing of this sentiment is that humans are a part of nature, not apart from nature. Let’s not lose the path in a flight of fossil-fueled fantasy.

March 22, 2021 Update: Tom Murphy wrote a post highlighting the ideas from his book that will be new for Do the Math readers, and asking for our help to promote his free book.

https://dothemath.ucsd.edu/2021/03/textbook-tour/

Textbook Tour

Last week, in the first Do the Math post in years, I kept the post brief, only pointing out the new textbook: Energy and Human Ambitions on a Finite Planet, and giving a brief account of the backstory.

In this post, I take a bit more time to introduce new elements in the book that Do the Math readers have not seen represented in some form in earlier posts. In other words: what new insights or calculations lurk within the book?

The following is organized into three sections. The first takes a brief tour of the book, pointing out large, new blocks that are not already covered by Do the Math in some form. The second highlights the results of new calculations or figures that bring new context to our understanding. Finally, I summarize some of the new big-picture framing that emerges in the book.

Rather than laboriously inserting associated graphics into this post, my intent is that you treat this as a companion to be used side-by-side with the downloadable PDF of the book. References are to sections, figures, boxes, etc. rather than page numbers, which vary between electronic and print forms. So go ahead and get a version of the PDF up, and let’s jump in…

Brief Tour of New Content

The Preface may be worth reading for overall framing and motivation. The middle part about student learning and approach to mathematics/problems might not be as worthwhile, but the beginning and end are likely of interest.

The first four chapters attempt to lay out constraints on growth, initially hewing closely to the first two Do the Math posts on Galactic Scale Energy and Can Economic Growth Last. Chapter 3 on population echoes some points in The Real Population Problem, but adds substantial analysis of the demographic transition. I felt this was an important addition because many academics look to this mechanism to “solve” the population problem. What I point out is that the transition is a double-whammy for planetary resources: even though the result is zero-growth, the road to that point involves a population surge and increasing resource usage per capita. More people multiplied by a higher per-capita resource use is bad news for resource constraints. The dream, therefore, has a nightmarish element that might be neglected by many because demographic transitions of the past were not constrained in this way and seemed to be very positive, on balance. A recurring message: the highly abnormal recent past offers poor guidance to the future. Finally, Chapter 4 echoes the popular Why Not Space post, closing off this exit—or at least prompting the invested believers to cast the book aside and waste their time in a manner more to their liking.

Chapter 5 is a dry one on units, and does not exist on Do the Math except in a static page called Useful Energy Relations. Chapter 6 consolidates several posts on thermal energy and heat pumps. Chapter 7 is basically new, as a snapshot of U.S. and global energy and plots of recent trends.

Elements of Chapter 8 on fossil fuels can be found among the Do the Math posts—especially those on peak oil. But no overview of fossil fuels really existed on the blog. Chapter 9 on climate change is similar to the Recipe for Climate Change in Two Easy Steps, but is considerably expanded to detail the expected impact on temperature, explore limiting-case scenarios for the future, and delve into the thermal requirements for heating the ocean and melting ice.

Chapter 10 provides an overview of Earth’s energy budget and introduces the alternative and renewable energy options. This short chapter has no direct analog in Do the Math.

The heart of the book covers topics that do not change much over time: technologies for harnessing alternative energy. Prices might change, but the fundamentals tend not to. Thus, Chapters 11 through 16 largely echo Do the Math content. Note that the writing itself is new, and has benefited from extensive student feedback to improve clarity and accessibility. So it’s not a cut-and-paste job, but the overall take-aways are going to be familiar to Do the Math readers. Chapter 17 is the book’s version of The Alternative Energy Matrix, and is the closest thing to cut-and-paste in the book, being billed as a slightly edited reproduction of an existing chapter in the State of the World 2013 book.

The two main changes in the alternative energy chapters have to do with solar prices going down (now at under $3/Watt for residential and $1/Watt for utility-scale installations; the panels themselves being $0.50/Watt) and new recommendations for wind-farm turbine spacing, lowering the estimated power per land area available. I also added state-by-state maps for hydroelectricity, wind, and solar photovoltaic utilization in the U.S., for four different attributes (total power, power per area, power per person, and capacity factor).

The last three chapters depart the most from Do the Math content, although containing familiar elements like an exploration of personality types and a description of the Energy Trap. Chapter 20 bears some resemblance to posts on household energy and dietary choices. But the packaging may be different enough that it does not feel like repetition of Do the Math.

The Epilogue is completely new, and likely of interest to Do the Math readers.

Appendix D is the most thoughtful Appendix. Of greatest interest will be D.3 on electric transportation, D.5 on the long view of human success, and D.6 on an evolutionary perspective regarding human intelligence and how that may or may not mesh well in the natural world.

Highlights of New Results

The following tidbits are arranged in chronological order, and for the sake of brevity only represent the more thought-provoking additions.

In Chapter 2, Figure 2.3 on lighting efficiency progress surprised me in that the same 2.3% growth rate adopted for Chapters 1 and 2 on growth of energy fits the lighting history rather well. If the trend continues, we reach theoretical limits well before century’s end.

Chapter 3 has one new development and one new presentation of interest. The development is the recognition that the population surge associated with a demographic transition is proportional to the exponential of the change in birth/death rate times the lag between declining death rate and declining birth rate (Figure 3.16). The factor can easily more than double the pre-transition population. The new presentation is in Figure 3.17, exposing how preposterous the “dream” scenario looks of advancing a growing population to “western” energy standards by the year 2100. Substances that facilitate such delusions are usually illegal.

The only thing I’ll say about Chapter 4 here is that I planted an (accurate) Easter egg in Figure 4.2—only applicable to the electronic version.

I was surprised by Figure 7.9, showing the U.S. as a literal super-power (as measured in Watts) in the mid-twentieth century—using more than 80% of global natural gas and over 70% of global petroleum. I don’t think it’s a coincidence that some Americans long to return to these “glory” years (not at all glorious for less privileged individuals, it should be noted). The mistake is thinking that it’s a matter of choice. America’s dominant role in the world had a resource foundation, and that ship has sailed. It’s not a matter of politics: it’s physics, and anger won’t solve it.

Figure 8.8 made an impression on me as well. A simple calculation based on discovery and consumption of conventional oil, as presented in Figure 8.7, provides a measure of how many years appear to remain in the resource. Simply dividing unconsumed reserves by current consumption gives a timescale, and this can be tracked as a function of time as new discoveries accumulate and consumption rate increases. The startling result is that the predicted endpoint has not budged from around the year 2050 for about four decades! I caution readers not to take this literally to mean that oil runs out in 2050. First, the plot only applies to conventional oil reserves. Second, reduced consumption rate due to scarcity, prices, policy directives, or suitable substitutes will mean a tapering beyond 2050 rather than abrupt termination. Still, it’s a relevant and alarming data point: conventional oil is unlikely to persist in its present dominance for even three more decades! I think that’s big news, people. How many decades old are you?

A number of new results accompany Chapter 9 on climate change. Most rewardingly, I “took it up a notch” from the previous calculations of annual and cumulative CO2 emissions from fossil fuels and used annual data on fossil fuel use to produce a graphs of emissions from the three fossil fuels across time (Figure 9.3). Doing so shows coal’s prominence as the king of CO2 emitters—now and throughout the past. Since we still have more coal than any other fossil fuel, it may just be the gift that keeps on giving. But most remarkable was the exercise of plotting the predicted emission on top of measurements in Figure 9.4. Prior to this, I was satisfied by getting the annual and cumulative emission numbers to match measurements. But to see it graphically: faithfully following the curvature and lying right atop the measurements brought a smile of despair to my face. The same approach lends itself well to exploring CO2 emissions scenarios for fossil fuel expenditures going forward: what happens if we cease growth in consumption; if we replace all coal with natural gas; or if we taper off entirely by 2100 or 2050. Only the last, draconian option limits the ultimate temperature rise to 2.0°C, according to my math.

I also had some “fun” in Chapter 9 stepping through the process by which a radiative imbalance equilibrates (Figure 9.15), and computing the timescales for melting ice and heating up the ocean (section 9.4.2).

Box 13.3 in Chapter 13 looks at solar-powered transportation. Why had I never before computed that a Boeing 737 could only get 4% of its cruise power from direct solar power? It’s an important demonstration of physical limitations.

Box 14.3 computes the thickness of all life on the planet, if squashed to a uniform layer surrounding the globe. It’s 4 mm thick! Or should I say 4 mm thin? That’s precious thin: a fragile wafer. It’s what makes this planet special, and our own lives possible. That’s the ultimate treasure of the planet, and deserves every protection we can offer.

Figures 15.14 and 15.15 are my attempt to explain the origin of nuclear waste, and why the neutron-rich daughter nuclei are radioactive hazards. This resurfaces in Figure 15.19 on nuclear waste radiated power, which I derived from probabilities and decay energies found in the Chart of the Nuclides. On another front, a quick-and-dirty financial assessment for both fission and fusion does not put them in a favorable light against (also expensive) solar, while solar is much safer.

The only good part about Chapter 16 is the fish duo in Figure 16.2.

Box 17.1 is a bit of a follow-up to Box 13.3 on solar transportation, exploring electric (battery-powered) passenger airplanes, concluding that for the same “fuel” load, range would be cut by a factor of 20 (to about 200 km), making them sort-of useless.

Chapter 17 also introduces an alternative scoring of the Matrix, based on student weights for the ten attributes of each source. I was interested to see if the fossil fuel gap persists (it does), and if the rankings change (mostly, they don’t).

Box 19.1 takes a stab at quantifying the dollar value of Earth. It’s a crude approach, and not entirely defensible. But even under dubious assumptions, the resulting price is so preposterously large that the point is fairly robust: Earth is far more valuable than our global annual economy, by as much as a factor of a million. Decisions based on money (i.e., most decisions) are therefore woefully misguided. Earth and its ecosystems should come first in societal decisions. Sorry if capitalism gets hurt in the process. Money ceases to have meaning without a life-bearing planet. Priorities!

Chapter 20 works to frame individual adaptation and quantitative assessment of energy footprints. The biggest new piece is the quantitative toolset developed in Section 20.3.4 for assessing dietary energy impact. I think this kind of analysis has the potential to meaningfully reshape our habits and expectations around food choices.

Section D.3 in the Appendices represents a first attempt on my part to nail down the implications of electrified transport for shipping as well as personal transport. Part of the work was already done for Box 17.1 (airplanes), but I had never put pencil to paper on cargo ships or long-haul trucking. The results address the “why can’t we just…” musings on electrifying all transportation. It’s hard. Table D.2 is still new enough to me that I need to study it more and internalize it.

Big Stuff

Okay—that takes care of the nuts-and-bolts additions. What larger messages might emerge from the textbook that may not have been apparent in previous Do the Math content?

Life is Precious

Much of the focus of this blog, and of the textbook, is on energy and resources. But a consistent undercurrent advocates prioritizing nature above ourselves. See, for instance, the reference to Box 14.3 in the section above. Also, Box 19.1—in computing the monetary value of the planet—stresses the backwards way we assess value. We put the flea (economy) in charge of the dog (Earth), ignoring the important fact that the flea can’t live without the dog. An upcoming post will illustrate this theme in an absurd yet compelling manner.

In the end, as the Epilogue wraps up, I try to encapsulate this in a message to the future (but not too soon to adopt the message now!!): Treat nature at least as well as we treat ourselves. It’s a partnership, and the health of the former is a prerequisite to the health of the latter.

Focus on the Long Term

Chapters 18 and 19 discuss the limitations of short-term focus in the face of our challenges. Democracy and business interests tend to have a very short focus, making us vulnerable to the Energy Trap.

But Section D.5 in the Appendix takes this to an expansive vista. It starts with the observation that civilization (cities, agriculture) began roughly 10,000 years ago. Lest we be nearer our end than the beginning, we should be thinking about practices consistent with another 10,000 years on this planet, at least. Maintaining uninterrupted civilization (preserving knowledge without a catastrophic reset) for this long is what we will call successful. Failure to do so is, well, failure.

What would it take to achieve success? As spelled out in section D.5, almost nothing we do today contributes to ultimate success. Therefore most of our actions today only make failure more likely. To me, that is sad to contemplate. Each passing day that we do not prioritize the natural world makes ultimate success a more distant prospect.

Section D.6 follows this up with musings on the role of human intelligence in an evolutionary context. My conclusion is that evolution tinkers, and is capable of producing a being that is too smart to succeed. We have the power to create our own failure, and take many species down with us. It’s time to “ask not” what we can do with our power, but what we should do to best ensure a long, rewarding existence in partnership with the rest of nature.

This Moment is Abnormal

Perhaps the most important message the new textbook can convey is that the abnormality of the last few centuries has turned us into the worst judges of future possibilities. Several times in the book, I compare the present era to a fireworks show: dazzling, awe inspiring, and a short-lived exception to “normal” activity. At least we can appreciate the aberration that a fireworks display represents by comparing it to a longer baseline: we have a broader context. Yet for those born and raised entirely within the fireworks show, it is easy to understand how their world view would be badly distorted.

Margin note 12 in Chapter 2 and the one below it points out our tendency to extrapolate, and think that just because we got “lucky” once (finding and learning to exploit fossil fuels) does not mean the trend will continue indefinitely. People often process the abnormality of our time in a dangerous way: because people 200 years ago could not possibly have predicted the amazing life of today, we are equally ill-equipped to fathom the miracles of tomorrow. I appreciate the bigness of thought that it takes to conceive of this. It’s a fair and alluring point. But it also ignores data and context: physical limits; a “full” earth; exhaustion of one-time resources; climate change perils; systemic collapses in ecosystems around the globe. Please work harder to incorporate these “wrinkles” into an otherwise grand notion.

Somewhat relatedly, margin note 24 in Chapter 2 and note 11 in the Epilogue make reference to the “Boy Who Cried Wolf” parable. This is a story told by adults to caution kids against raising false alarms, as setting up a reflexive dismissal of “fake news” can have damaging consequences. But consider two overlooked aspects of this story: first, a wolf did eventually appear and wreak havoc; and second, shouldn’t the adults bear responsibility for not protecting the town? Is the child really to blame? What idiots would put the responsibility of town protection on a child? I say that the failure rests mostly on the adults. They should recognize that children are prone to false alarms, and admonish them for knowingly creating disruption—after checking on the possibility of a real threat, for goodness sake! They utterly dropped the ball, and paid the price.

I came to think as I put finishing touches on the textbook that if asked to pick one message to communicate with this book it would be that the recent highly anomalous past has cruelly misshapen our perception of future possibilities. I put this into the abstract (and the back cover of the paperback), and sprinkled it into the text as an afterthought (search the word fireworks for some instances). As important as this point is, its presence throughout is implicit. I will likely try to more directly integrate the thought into a future edition.

A grounded understanding that our time is grossly abnormal in the long view is, I think, a necessary first step in snapping out of our current mindset, shaking off fantastical dreams, and getting to work defining and implementing a future that can actually work. It’s time to break the spell.

HELP SPREAD THE WORD

I am too close/biased to judge whether this book has enough intrinsic merit and appeal to “catch on” and reach a broad audience. But people will not give it a chance and instructors won’t adopt it for classrooms if too few people even know about it. Because I intentionally bypassed a for-profit publisher to make the book freely available, I lose the benefit of any publicity apparatus a publishing company might provide. So it’s down to “the people” to let others know of its existence. Fortunately, social media channels are well suited to this. Please consider sharing this book with others (reference the link to the book, not this “inside baseball” post). I hope the book is written in a way that can draw people in and then inspire them to keep turning pages. If recommending to friends and family, perhaps think about targeting a section or two to avoid their feeling overwhelmed by a textbook-sized reading assignment. If you can think of a personal connection to make it more directly relevant to them, all the better.

I don’t think I have ever asked for this sort of favor, and am not wholly comfortable with the appearance that I am shamelessly self-promoting here. But since I receive no financial benefit (even from the printed book) or prospect of job promotion as a result, I can convince myself that it’s out of a hope that the book might have some power to change minds and play some small role in setting us onto a more successful path. Call it optimism, bias, over-confidence, or whatever, but if the book can gain significant traction, then perhaps it deserves every chance and advantage. If months or years go by, this “old news” textbook will no longer have the shiny luster of newness, and will be less likely to spark a flame equal to the task ahead of us. The book may flop on its own (lack of) merits; then it flops—so be it. But let’s at least be able to say that it wasn’t for lack of trying to make people aware of its presence.

Apneaman wrote a song to celebrate the return of Tom Murphy:

Hey-la-day-la my Physicist’s back

He went away and hopium hung around
And bothered me, every night
And when I wouldn’t buy into it
You said things that weren’t very nice
My Physicist’s back and you’re gonna be in trouble
(Hey-la-day-la my Physicist’s back)
You see him comin’ better SHUT UP on the double
(Hey-la-day-la my Physicist’s back)
You been spreading lies that collapse was untrue
(Hey-la-day-la my Physicist’s back)
So look out now ’cause his math foretells doom
He’s been gone for such a long time
(Hey-la-day-la my Physicist’s back)
Now he’s back to prove we’re out of time
(Hey-la-day-la my Physicist’s back)
We’ll all be sorry we were ever born
(Hey-la-day-la my Physicist’s back)
‘Cause his brain’s kinda big and his math’s da bomb
(Hey-la-day-la my Physicist’s back)
(You’re a Green dreamer now but he’ll cut you down to size
(Wait and see)
My Physicist’s back he’s gonna prove our damnation
(Hey-la-day-la my Physicist’s back)
If I were you I’d pray for endtimes salvation
(Hey-la, hey-la, my Physicist’s back)
Yeah, my Physicist’s back (La-day-la, my Physicist’s back)
Look out now, yeah, my Physicist’s back (La-day-la, my Physicist’s back)
I could see him comin’ so you better get a runnin’ alright now (La-day-la, my Physicist’s back)
Yeah, yeah, yeah, yeah, yeah (La-day-la, my Physicist’s back)
My Physicist’s back now (La-day-la, my Physicist’s back)
Know he’s comin’ after you because he knows I’ve been true to doom (La-day-la, my Physicist’s back)