Retreat to Sanity

I’m new to the work of Dr. Malcolm Kendrick but a skim of his blog suggests he has many wise things to say and has written several books that I intend to read.

I was unable to find many videos with Dr. Kendrick, and some that were on YouTube have been deleted by censors, but I did very much enjoy this must watch November 2020 discussion on Covid19.

Today’s essay by Dr. Kendrick may be the best I’ve read on Covid19 and nicely articulates how I’ve been feeling of late.

https://drmalcolmkendrick.org/2021/09/03/i-have-not-been-silenced/

Despite Dr. Kendrick’s expertise, intelligence, curiosity, and determination, he has been unable to determine what is true about Covid19, and has decided to retreat to sanity.

My self-appointed role within the COVID19 mayhem, was to search for the truth – as far as it could be found – and to attempt to provide useful information for those who wish to read my blog.

The main reason for prolonged silence, and introspection, is that I am not sure I can find the truth. I do not know if it can be found anymore. Today I am unsure what represents a fact, and what has simply been made up. A sad and scary state of affairs.

… So, I have given up on COVID19. It is a complete mess, and I feel that, without being certain of the ground under my feet, I have nothing to contribute. I too am in danger of starting to make statements that are not true.

… faced with a situation where there are almost no facts that can be relied upon, from anywhere, I have officially removed myself from all discussions on the matter of COVID19.

Instead, I shall return to other areas where, whilst the truth is constantly battered and bruised, and lying in a bruised heap the corner, it is still breathing … just about alive. Sometimes it is capable of weakly raising its head and whispering quietly into my ear. I shall let you know what it says.

Before departing the arena Dr. Kendrick summarized what he believes is true about Covid19:

  • SARS-CoV2 probably resulted from gain of function research in the Wuhan lab, but we’ll probably never know for certain.
  • The current versions of SARS-CoV2 are a bit more deadly than our modern influenzas with an infection fatality rate (IFR) of about 0.15%.
  • None of the test data can be trusted.
  • It is impossible to compare the effectiveness of various strategies using available data.
  • Misinformation exists on all sides of the debate.
  • Everyone has an agenda including the fact-checkers.

I’m going to try to follow Kendrick’s lead and return my focus to the many much more important overshoot issues that are grounded in reliable science that we collectively deny.

Descending Into Madness

I think our society is going mad because there are so many overshoot related problems converging at once that our inherited denial mechanism is overloaded, with no leaders who understand what’s going on, few experts willing to speak publicly, and no honest discussion about what’s happening, nor what we should do.

I expect something will snap soon in a bad way.

Symptoms I see include:

  • We talk about everything except what matters. For example, our climate has shifted a gear, and peak oil is behind us, yet there is zero discussion about food security or the need for population reduction.
  • We’ve polarized into tribes that are unable to contemplate or respect or discuss the beliefs of another tribe. We attack or ignore opponents rather than engage in respectful debate. We’ve always tended to do this, but it’s getting worse.
  • Facts are irrelevant to beliefs. When facts are unsure or complex we are unable to admit uncertainty. While common throughout history, this phenomenon is getting worse, and is now pervasive in our intellectual leaders.
  • We’re totally dependent for everything we need to survive from other countries that we now view as enemies, yet we never discuss the need for more resilience.
  • We embrace solutions that have zero probability of improving a problem. Think green new deal.
  • Our response to problems often worsens the outcome. For example, printing trillions to further inflate a bubble that when it pops will do additional damage to that which we’re trying to protect.
  • We embrace leaders who created a problem to fix a problem, and there are no longer consequences for illegal or unethical behavior. Think Fauci.

This excellent new video has many useful insights despite the producers not being aware of Varki’s Mind Over Reality Transition (MORT) theory.

MASS PSYCHOSIS – How an Entire Population Becomes MENTALLY ILL

A mass psychosis is an epidemic of madness and it occurs when a large portion of the society loses touch with reality and descends into delusions.

Totalitarianism is the greatest threat.

Dr. David Martin – (Covid is) A Manufactured Illusion

Dr. David Martin has done a detailed review of the 73+ patents relevant to Covid and the facts are shocking and speak for themselves.

I’m allergic to conspiracies but this one smells real to me.

Everything we are being told by our “leaders” about Covid is apparently wrong.

I watched this July 9 video presentation three times before posting it because it’s so evil that it’s hard to digest and accept.

Click this link to watch the video from it’s Odysee source:

https://odysee.com/@FwapUK:1/A-manufactured-illusion.-Dr-David-Martin-with-Reiner-Fuellmich-9_7_21_-720p:5

Here is a copy on YouTube which may disappear soon:

Here is a document with references for fact checking Martin’s claims:

Not mentioned by Martin but additive to the case against our “leaders” is:

  • aggressive undermining and censorship of Ivermectin, an inexpensive and safe drug for prevention and treatment;
  • no promotion of inexpensive and safe methods for strengthening immune systems;
  • irrational policies such as vaccinating people who have recovered from Covid;
  • no debate of Dr. Bossche’s theory that a mass vaccination campaign during a pandemic with a non-sterilizing vaccine may create more dangerous variants that are immune to the vaccine and a vaccine degraded natural immune system;
  • no investigation of the virus source nor measures to prevent a recurrence.

I feel like I’m having a seriously deranged dream.

If anyone is able to re-spin the data Martin presents into a pro-social or benign scenario, I would be grateful to hear your ideas.

Reality Blind by Nate Hagens and DJ White

Nate Hagens has published a new book on the predicament that fossil energy consumption and depletion, and our denial of this reality, have created for life on this planet.

A skim suggests the book will be excellent and I hope to write a review after reading it.

I observe there is no mention of Varki’s Mind Over Reality Transition (MORT) theory which is sad because MORT provides an evolutionary foundation for the denial that Nate discusses, and explains why only one species has emerged with the intelligence to exploit fossil energy.

Denial of our genetic tendency to deny reality is apparently the strongest form of denial, even among the few of us that are aware of the human predicament.

You can read Nate’s book for free and purchase a copy here:

https://read.realityblind.world/view/975731937/i/

In case you missed it, this year’s annual Earth Day talk by Nate is on the same topic and is a masterpiece.

By Neil Halloran: A Skeptical Look at Climate Science

I haven’t had time to write a new essay, and I wanted a new post so newcomers don’t assume un-Denial.com has shifted its focus to Covid, which is a confusing space populated by crazy people assigning complex global conspiracies to a bunch of incompetent and sometimes corrupt leaders.

Thank you to reader Frank White for providing a good reason for a quick post with a new video by Neil Halloran on climate change.

It’s my first exposure to Halloran and I’m really impressed. He targets people that are skeptical of climate change and does an amazing job of leading them to conclude we are in serious trouble and must act.

I left this comment on his YouTube channel:

Brilliant content and production! This is best video I’ve seen for persuading climate change skeptics that we are in serious trouble. Thank you.

Your next step should be to address the human genetic tendency to deny unpleasant realities.

https://un-denial.com/denial-2/theory-video/

How to Have a Difficult Conversation about Vaccination

I’ve decided to wait a little longer before being vaccinated, so that I can observe and weigh rapidly accumulating evidence for and against vaccination.

I’m feeling social pressure to get vaccinated, and I expect that pressure to increase, so I’ve been thinking about how to discuss this divisive topic with people that I care about. My plan follows.

I will start by acknowledging that we share common goals:

  • prevent serious sickness and death
  • resume normal activities as soon as possible
  • do what is best for the majority of citizens

Then I will carefully articulate that I understand what the other person believes:

  • vaccination prevents serious sickness and death
  • vaccination reduces spread of the virus
  • vaccination discourages the emergence of new more dangerous variants
  • vaccination protects against variants, and if protection fails in the future for a new variant, can be remedied with a new booster vaccine
  • therefore, a person who does not get vaccinated is being irresponsible by increasing the risk to both vaccinated and unvaccinated citizens

Then I will confirm that I understand why they have these beliefs:

  • health authorities and political leaders in almost all countries of the world are communicating that these beliefs are true
  • all of the mainstream news media supports these views
  • there is an aggressive worldwide campaign underway to vaccinate most citizens
  • countries with the highest vaccination rates have to date shown the most improvement in cases and sickness

Then I will identify the source of my concern that our vaccination policy may be a mistake:

  • Dr. Geert Vanden Bossche is a vaccine expert with 30 years experience developing vaccines https://www.linkedin.com/in/geertvandenbossche/
  • Bossche is not an anti-vax conspiracist
  • Bossche thinks our leaders and vaccine developers are competent with good intentions but may have overlooked some serious implications of their strategy due to the urgency to “do something”, and due to a lack of understanding of how some aspects of the immune system function
  • Bossche thinks our current broad vaccination policy would be the correct policy if deployed before the virus was widespread in the population

Then I will explain why I think we should pay attention to Bossche:

  • he is intelligent with good intentions
  • his arguments are science based and plausible
  • he is not saying that his hypothesis is absolutely correct, he is saying there is enough existing science and emerging evidence to warrant an urgent investigation and discussion by the scientific community
  • caution is wise because we are intervening in an unprecedented manner (vaccinating during a pandemic with emerging variants) on a complex system (immune system), within a complex system (human body), within a complex system (global civilization), using a tool with long-lasting irreversible effects (vaccination), and the penalty for making a mistake is high (much worse pandemic)
  • our leaders have not earned our trust because to date they have a poor track record of making timely and wise decisions on the virus
  • if Bossche is correct and we’ve made a mistake then our current vaccination policy has serious long term implications that may not be undone

Then I will provide a link to Bossche’s site and point to an April 22 interview of Bossche by Bret Weinstein, a PhD biologist, who helps Bossche explain a complex topic, and which is the best starting point for understanding the risks.

Then I will explain the implications of Bossche being correct:

  • vaccination prevents serious sickness and death from the original virus
  • vaccination reduces spread of the original virus
  • vaccination encourages the emergence of new more dangerous variants
  • vaccination will not protect against new variants, and may block the effectiveness of new booster vaccines for new variants
  • vaccination will reduce the innate immune system’s ability to respond to new variants
  • therefore, a healthy person at low risk of serious sickness who chooses to be vaccinated will increase the risk to vaccinated and unvaccinated citizens, and to themselves
  • by waiting for a review of the science and for data on emerging variants, before being vaccinated, low risk citizens may be doing the right thing for both themselves and society

Then I will explain that my decision to wait would be wrong if:

  • I was unhealthy or my immune system was weak
  • I had regular close contact with people that are unhealthy or have weak immune systems
  • I was not using high caution with social distancing, masks, and personal hygiene

Overshoot Doubt? Chris Clugston Kills It

Thanks to Sam Hopkins for bringing my attention to the work of Chris Clugston.

I’m pretty well read in the overshoot space and I thought I knew all the important contributors. Somehow I missed Chris Clugston.

Clugston has written two books: Scarcity in 2012, and Blip in 2019.

His unique contribution is to research our consumption of depleting non-renewable resources. All 100+ of them, not just fossil energy.

For many people, fossil energy depletion is a fuzzy threat because it’s complicated and there are so many cheerleaders of false beliefs. Ditto for the climate change threat with its promoters of green growth and carbon capture machines.

Clugston presents so many tangible non-negotiable threats to modern civilization that after absorbing his work there is no room for doubt and no where to hide.

His conclusion is bleak. Clugston calculates modern civilization will be done by 2050, with or without climate change, with or without peak oil, and with or without any green new deal idea.

Harsh yes, but real, and honest, and helpful for those still trying to make the future less bad, because his work shows that the best path is democratically supported rapid population reduction policies.

Clugston’s visibility on the internet is low. I don’t know it that’s by choice, or because of the unpleasantness of his message. I’d like to see that fixed so the people working to make the future less bad can use his work as ammunition.

https://www.readblip.com/

What we do to enable our existence simultaneously undermines our existence…

Our enormous and ever-increasing utilization of NNRs (nonrenewable natural resources) – the finite and non-replenishing fossil fuels, metals, and nonmetallic minerals that enable our industrial existence – is causing:

– Increasingly pervasive global NNR scarcity, which is causing

– Faltering global human prosperity, which is causing

– Increasing global political instability, economic fragility, and societal unrest.

This scenario will intensify during the coming decades and culminate in humanity’s permanent global societal collapse, almost certainly by the year 2050.

Since 2005, Chris Clugston has conducted extensive research into human “sustainability”, with a focus on non-renewable natural resources (NNR) scarcity. His goal has been to articulate and quantify the causes, implications, and con­sequences associated with industrial humanity’s “predicament” – our self-inflicted, self-terminating human/Earth relationship.

Here is the companion video to his book Blip:

Here is a 2012 presentation by Clugston in support of his book Scarcity:

Here is a summary of Clugston’s 2012 book Scarcity:

Here is a 2014 paper titled “Whatever Happened to the Good Old Days?

Denial with Cortical Columns

I just finished the new book by Jeff Hawkins titled “A Thousand Brains: A New Theory of Intelligence”.

A bestselling author, neuroscientist, and computer engineer unveils a theory of intelligence that will revolutionize our understanding of the brain and the future of AI. 

For all of neuroscience’s advances, we’ve made little progress on its biggest question: How do simple cells in the brain create intelligence? 

Jeff Hawkins and his team discovered that the brain uses maplike structures to build a model of the world-not just one model, but hundreds of thousands of models of everything we know. This discovery allows Hawkins to answer important questions about how we perceive the world, why we have a sense of self, and the origin of high-level thought. 

A Thousand Brains heralds a revolution in the understanding of intelligence. It is a big-think book, in every sense of the word.

I’ve followed Hawkins for many years and he’s one of my favorite neuroscience researchers. He started as an electrical engineer and created in 1996 the groundbreaking handheld PalmPilot (which I owned 🙂 ), and then switched careers to his passion of figuring out how the brain works.

In his book he proposes a new theoretical framework for how intelligence works. I think he’s on to something important. So does Richard Dawkins who wrote the forward and compares the book to Charles Darwin’s On the Origin of Species.

I see an opportunity to build on Hawkins’ intelligence framework to push Varki’s MORT theory forward by refining why and what we deny, and how denial is implemented in the brain. Some of my still rough ideas are presented at the end of this essay.

There’s a second aspect of Hawkins’ book that is also interesting.

After presenting his new theory on intelligence, Hawkins spends the last half of the book explaining how our old brain behaviors and false beliefs (aka denial) threaten the survival of our species, and he proposes several ways we might avoid these threats.

He’s clearly worried and knows we are in trouble.

Yet when discussing the threats to our species he is blind to the biggest, imminent, and certain threat we face: fossil energy depletion. Hawkins, like most polymaths, can’t see that the technology he loves, was created by, and totally depends on, rapidly depleting non-renewable resources.

So we have a world expert on how and why our brain creates false beliefs, that can’t see his own false beliefs.

We could ask for no better evidence that MORT is true! 

But wait, there’s more.

In the last chapters Hawkins obsesses over inventing a lasting means for our species to signal to other life in the universe that human intelligence once existed. As I was reading this I kept thinking, what the hell are you going on about? The odds are extremely low that other intelligent life will ever see our signaling satellites, and who the hell cares if they do? Then a light went on. His signal is a high tech version of an Egyptian pyramid, and is his brain’s mechanism for denying death.

So how could it get any better?

  • a well written enjoyable book
  • with an important new theory
  • on the most interesting aspect of a unique species
  • that may push forward Varki’s MORT theory on why we exist
  • by a brilliant polymath
  • that is blinded by the same denial that created his species

Following is a brief recapitulation of Hawkins’ cortical column framework for intelligence integrated with my musings on how it might be used to clarify and focus Varki’s MORT theory.

This hypothesis will be revised, possibly substantially, after I complete a 2nd more careful reading of Hawkins’ book and published papers, which I’ve just started. I’m also hoping to incorporate criticism from Dr. Varki which may improve or kill my ideas.

Downvoting the Cortical Column Death Model to Breach the Extended Theory of Mind Barrier

Version 1.2, April 17, 2021

Note: For the sake of brevity, every occurrence of “not die” should be read as “not die until viable offspring are produced”.

  • Genes evolve and collaborate to create bodies.
  • Bodies exist to replicate genes.
  • A body must not die to achieve its purpose of replicating genes.
  • The brain exists to help the body by choosing the best action to not die for a given set of sensory inputs.
  • The old brain uses simple static models to directly cause actions to not die.
  • The neocortex uses more complex learned models to indirectly cause actions to not die by requesting the old brain to execute actions.
  • Learning is moving: the neocortex learns by moving senses around the subject to create (up to about 1000) reference frame models.
  • Thinking is moving: concepts without physical form, like mathematics, are learned by moving between models to create new reference frame models.
  • Models have redundancy which makes knowledge more resilient and repurposable.
  • Models are stored in cortical columns.
  • The neocortex is composed of many nearly identical cortical columns.
  • Senses (and outputs from other models) are evaluated for matches by models.
  • Models collaborate by voting to decide our conscious reality.
  • The agreed reality is used by other models to select the best action to not die.
  • Evolution increases the number of cortical columns in species that benefit from more intelligence to not die.
  • Social species have the most cortical columns because modeling social relationships is hard.
  • The human neocortex has about 150,000 cortical columns.
  • There are two important thresholds on the continuum of increasing social intelligence.
  • “Theory of mind” is the threshold where a brain learns a model of another brain, and that model includes an understanding that the other brain can die.
  • “Extended theory of mind” is the threshold where a brain learns that its model of another brain also models itself, and that it can also die.
  • The extended theory of mind threshold may be difficult for evolution to cross, because it has happened only once on this planet.
  • A model that predicts possible death from injury and certain death from old age results in fewer actions to not die.
  • Fewer actions to not die is called depression.
  • Genes for an extended theory of mind thus do not persist.
  • To break through the barrier, evolution requires a mechanism to prevent the learned death model from evaluating true.
  • A mechanism consistent with the archeological record was to learn a model for life after death (aka God) which downvotes the death model thus continuing the actions to not die.

Modern Implications of the Death Model

  • Climate change acceptance combined with the common false belief that renewable energy can replace depleting non-renewable fossil energy, and the common false belief that technology can remove sufficient CO2 from the atmosphere, does not trigger the death model, and the false beliefs cause our species to take actions that worsen our overshoot predicament.
  • Awareness of human overshoot and its implications are present in less than 0.01% of humans, including most highly educated polymaths, because it triggers the death model. Most people deny overshoot with false beliefs that non-renewable resources are abundant.

Crash Course Crash: On Making a Living from Overshoot Education

Chris Martenson yesterday unveiled what has been going on behind the scenes at Peak Prosperity.

I salute Martenson’s honesty for explaining how difficult it has been to make a living from overshoot education.

As an aside, I don’t think he’s aware of it, but the reason it’s so hard to teach overshoot is explained by Varki’s MORT theory.

It seems there were 3 key problems at Peak Prosperity:

  • insufficient revenue from selling overshoot education;
  • one partner who wanted to focus on science based journalism, and one partner who wanted to focus on how to profit from the coming economic collapse;
  • a threat to revenue from YouTube’s censorship of Martenson’s excellent science based COVID-19 journalism.

Martenson shared something that troubles me (even more than I already was) about out future:

I created the Crash Course in 2008 because it didn’t exist. I’m proud of all that the Crash Course has accomplished – without it Peak Prosperity would never have come into being – and while it represents some of the best work of my life (so far), if it didn’t already exist I would not invest the time to create the Crash Course today.

Why not? Because the world has changed and I don’t think it would be even slightly receptive to that material now. The Crash Course had a huge impact in 2008. My assessment is that today it would fall flat and gain little traction. The programming against critical thinking and independent thought is too pervasive and successful. In brief, from my perspective, the world has gone a bit mad. It’s lost its grip on reality.

In case you aren’t aware of it, Martenson’s Crash Course is the best introduction to our overshoot predicament available anywhere. It was instrumental on my personal journey to awareness, and I thank Martenson for his excellent work.

There are two dimensions to his statement that trouble me.

First, Martenson is saying that citizens today are less interested in understanding reality than they were 10 years ago. It’s a concern because to reduce future suffering we need the overshoot awareness trend to be increasing rather than decreasing. The more we grow our population, deplete critical resources, degrade ecosystems, and inflate our debt bubble, the greater the eventual suffering we will experience. By denying an unpleasant reality we are making the eventual reality more unpleasant.

Although I think I understand the underlying reason for this trend, which is that our genetic tendency to deny reality is proportional to the unpleasantness of the reality, and our predicament today is much much worse than it was 10 years ago, it still deeply troubles me.

Second, Martenson is saying that if he were to start Peak Prosperity today he would not invest the time to create the Crash Course because insufficient people would pay for it.

Martenson is one of only two individuals out of eight billion (the other being Nate Hagens) that has taken the time to create a high quality video course on everything every citizen should understand to be a good citizen.

And he says he wouldn’t do it again because no one would watch it.

What else is there to say than WASF.

Tom Murphy’s back, yay!

Physicist Tom Murphy is one of the brightest and most articulate people in the overshoot awareness space.

A decade ago Murphy wrote frequently for a few years on his blog “Do the Math” where he explored the energy opportunities and constraints for powering our civilization. Then, having said what he wanted to say, he went silent.

Here is some of Murphy’s work that I’ve posted in the past which includes my all time favorite talk on limits to growth:

Today Murphy announced that he has published a new textbook titled “Energy and Human Ambitions on a Finite Planet” which can be downloaded for free.

https://dothemath.ucsd.edu/2021/03/textbook-debut/

After a long hiatus from teaching the general education energy course at UCSD—due mostly to a heavy administrative role for five years—I picked it up again for Winter quarter 2020. I had always been discontented when it came to textbook choices: my sense was that they tended to play it safe to avoid the risk of being provocative. But provocative may be what our situation calls for! I had been inspired by David MacKay’s fabulous and quantitatively rich Sustainability: Without the Hot Air, but its focus on the UK and not-quite-textbook format kept me from adopting it for the classroom.

So I set out to capture key elements of Do the Math in a textbook for the Winter 2020 class, following a somewhat similar trajectory: growth limits; fossil fuels and climate change; alternative energy capabilities and pros/cons; concluding with a dose of human factors and personal adaptation strategies.

Abstract

Where is humanity going? How realistic is a future of fusion and space colonies? What constraints are imposed by physics, by resource availability, and by human psychology? Are default expectations grounded in reality?

This textbook, written for a general-education audience, aims to address these questions without either the hype or the indifference typical of many books. The message throughout is that humanity faces a broad sweep of foundational problems as we inevitably transition away from fossil fuels and confront planetary limits in a host of unprecedented ways—a shift whose scale and probable rapidity offers little historical guidance.

Salvaging a decent future requires keen awareness, quantitative assessment, deliberate preventive action, and—above all—recognition that prevailing assumptions about human identity and destiny have been cruelly misshapen by the profoundly unsustainable trajectory of the last 150 years. The goal is to shake off unfounded and unexamined expectations, while elucidating the relevant physics and encouraging greater facility in quantitative reasoning.

After addressing limits to growth, population dynamics, uncooperative space environments, and the current fossil underpinnings of modern civilization, various sources of alternative energy are considered in detail— assessing how they stack up against each other, and which show the greatest potential. Following this is an exploration of systemic human impediments to effective and timely responses, capped by guidelines for individual adaptations resulting in reduced energy and material demands on the planet’s groaning capacity. Appendices provide refreshers on math and chemistry, as well as supplementary material of potential interest relating to cosmology, electric transportation, and an evolutionary perspective on humanity’s place in nature.

I skimmed the book to assess its tone. Murphy is trying to strike a balance between being honest about the difficulties we face, while not saying that civilization collapse is a certainty, and offers some constructive suggestions for how his young students might respond. It’s a similar (and understandable) strategy that Nate Hagens, another well known overshoot teacher has taken.

Here are a few excerpts filled with wise words from Murphy’s book:

19.1 No Master Plan

The “adults” of this world have not established a global plan for peace and prosperity. This has perhaps worked okay so far: a plan hasn’t been necessary. But as the world changes from an “empty” state in which humans were a small part of the planet with little influence to a new “full” regime where human impacts are many and global in scale, perhaps the “no plan” approach is the wrong framework going forward.

19.2 No Prospects for a Plan

Not only do we lack a plan for how to live within planetary limits, we may not even have the capacity to arrive at a consensus long-term plan. Even within a country, it can be hard to converge on a plan for alternative energy, a different economic model, a conservation plan for natural resources, and possibly even different political structures. These can represent extremely big changes. Political polarization leaves little room for united political action. The powerful and wealthy have little interest in substantial structural changes that may imperil their current status. And given peoples’ reluctance to embrace austerity and take personal responsibility for their actions, it is hard to understand why a politician in a democracy would feel much political pressure to make long-term decisions that may result in short-term hardship—real or perceived.

Globally, the prospects may be even worse: competition between countries stymies collective decision-making. The leaders of a country are charged with optimizing the prosperity of their own country—not that of the whole world, and even less Earth’s ecosystems. If a number of countries did act in the global interest, perhaps by voluntarily reducing their fossil fuel purchases in an effort to reduce global fossil fuel use, it stands to reason that other countries may take advantage of the resulting price drops to acquire more fossil fuels than they would have otherwise—defeating the original purpose. Then the participating countries will feel that they self-penalized for no good reason. Unless all relevant nations are on board and execute a plan, it will be hard to succeed at global initiatives. The great human experiment has never before faced this daunting a set of global, inter-related problems. The lack of a global authority to whom countries must answer may make global challenges almost impossible to mitigate. Right now, it is a free-for-all, sort-of like 200 kids lacking any adult supervision.

20.1 Awareness

How many people do you know who are concerned about a legitimate threat of collapse of our civilization? It is an extreme outcome, and one without modern precedent. It seems like a fringe, alarmist position that is uncomfortable to even talk about in respectable company. Yet the evidence on the ground points to many real concerns:

1. The earth has never had to accommodate 8 billion people at this level of resource demand;

2. Humankind has never run out of a resource as vital as fossil fuels;

3. Humans have never until now altered the atmosphere to the point of changing the planet’s thermal equilibrium;

4. We have never before witnessed species extinction at this rate, or seen such dramatic changes to wild spaces and to the ocean.

20.3.1 Overall Framing

In the absence of a major shift in public attitudes toward energy and resource usage, motivated individuals can control their own footprints via personal decisions. This can be a fraught landscape, as some people may try to out-woke each other and others will resist any notion of giving up freedoms or comforts—only exacerbated by a sense of righteous alienation from the “do-gooders.”

Some basic guidelines on effective adaptation:

1. Choose actions based on some analysis of impact: don’t bother with superficial stuff, even if it’s trendy.

2. Don’t simply follow a list of actions or impart a list on others: choose a more personalized adventure based on quantitative assessment.

3. Avoid showing off. It is almost better to treat personal actions as secrets. Others may simply notice those choices and ask about them, rather than you bringing them up.

4. Resist the impulse to ask: “what should I buy to signal that I’m environmentally responsible?” Consumerism and conspicuous consumption are a large part of the problem. Buying new stuff is perhaps counterproductive and may not be the best path.

5. Be flexible. Allow deviations. Rigid adherence makes life more difficult and might inconvenience others, which can be an unwelcome imposition. Such behavior makes your choices less palatable to others, and therefore less likely to be adopted or replicated.

6. Somewhat related to the last point, chill out a bit. Every corner of your life does not have to be perfect. We live in a deeply imperfect world, so that exercising a 30% footprint compared to average is pretty darned good, and not that much different than a “more perfect” 25%. Doing a few big things means more than doing a lot of little things that may drive you (and others) crazy.

7. In the end, it has to matter to you what you’re doing and why. It’s not for the benefit of others.

20.4 Values Shifts

In the end, a bold reformulation of the human approach to living on this planet will only succeed if societal values change from where they are now. Imagine if the following activities were frowned upon—found distasteful and against social norms:

1. keeping a house warm enough in winter to wear shorts inside;

2. keeping a house so cool in summer that people’s feet get cold;

3. having 5 cars in an oversized garage;

4. accumulating enough air miles to be in a special “elite” club;

5. taking frequent, long, hot showers;

6. using a clothes dryer during a non-rainy period;

7. having a constant stream of delivery vehicles arrive at the door;

8. a full waste bin each week marking high consumption;

9. having a high-energy-demand diet (frequent meat consumption);

10. upgrading a serviceable appliance, disposing of the old;

11. wasteful lighting.

At present, many of these activities connote success and are part of a culture of “conspicuous consumption.” If such things ran counter to the sensibilities of the community, the behaviors would no longer carry social value and would be abandoned. The social norms in some Scandinavian countries praise egalitarianism and find public displays of being “better” or of having more money/stuff to be in poor taste. Abandonment of consumerist norms could possibly work, but only if it stems from a genuine understanding of the negative consequences. If curtailment of resource-heavy activities is imposed by some authority or is otherwise reluctantly adopted, it will not be as likely to transform societal values.

20.6 Upshot on Strategies

No one can know what fate awaits us, or control the timing of whatever unfolds. But individuals can take matters into their own hands and adopt practices that are more likely to be compatible with a future defined by reduced resource availability. We can learn to communicate future concerns constructively, with out being required to paint an artificial picture of hope. Our actions and choices, even if not showcased, can serve as inspiration for others—or at least can be personally rewarding as an impactful adventure. Quantitative assessment of energy and resource demands empowers individuals to make personal choices carrying large impacts. Reductions of factors of 2 and 3 and 4 are not out of reach. Maybe the world does not need 18 TW to be happy. Maybe we don’t have to work so hard to maintain a peaceful and rewarding lifestyle once growth is not the driver. Maybe we can re-learn how to adapt to the seasons and be fulfilled by a more intimate connection with nature. The value of psychological preparedness should not underestimated. By staring unblinking into the abyss, we are ready to cope with disruption, should it come. And if it never does in our lifetimes, what loss do we really suffer if we have chosen our adventure and lived our personal values?

In this sense, the best adaptation comes in the form of a mental shift. Letting go of humanity’s self-image as a growth juggernaut, and finding an “off-ramp” to a more rewarding lifestyle in close partnership with nature is the main goal. Continuing the freeway metaphor, the current path has us hurtling forward to certain involuntary termination of growth (a dead end, or cliff, or brick wall), very probably resulting in overshoot and/or crash.

The guidelines provided in this chapter for quantifying and reducing resource demands then simply become the initial outward expressions of this fresh vision. Ignore the potentially counterproductive allure of fusion, teleportation, and warp drive. Embrace instead a humbler, slower, more feasible future that stresses natural harmony over conquest and celebrates life in all forms—while preserving and advancing the knowledge and understanding of the universe we have worked so hard to achieve. Picture a future citizen of this happier world looking back at the present age as embarrassingly misguided and inexplicably delusional. Earth is a partner, not a possession to be exploited. Figuratively throwing Earth under the bus precludes our own chances for long-term success. A common phrasing of this sentiment is that humans are a part of nature, not apart from nature. Let’s not lose the path in a flight of fossil-fueled fantasy.

March 22, 2021 Update: Tom Murphy wrote a post highlighting the ideas from his book that will be new for Do the Math readers, and asking for our help to promote his free book.

https://dothemath.ucsd.edu/2021/03/textbook-tour/

Textbook Tour

Last week, in the first Do the Math post in years, I kept the post brief, only pointing out the new textbook: Energy and Human Ambitions on a Finite Planet, and giving a brief account of the backstory.

In this post, I take a bit more time to introduce new elements in the book that Do the Math readers have not seen represented in some form in earlier posts. In other words: what new insights or calculations lurk within the book?

The following is organized into three sections. The first takes a brief tour of the book, pointing out large, new blocks that are not already covered by Do the Math in some form. The second highlights the results of new calculations or figures that bring new context to our understanding. Finally, I summarize some of the new big-picture framing that emerges in the book.

Rather than laboriously inserting associated graphics into this post, my intent is that you treat this as a companion to be used side-by-side with the downloadable PDF of the book. References are to sections, figures, boxes, etc. rather than page numbers, which vary between electronic and print forms. So go ahead and get a version of the PDF up, and let’s jump in…

Brief Tour of New Content

The Preface may be worth reading for overall framing and motivation. The middle part about student learning and approach to mathematics/problems might not be as worthwhile, but the beginning and end are likely of interest.

The first four chapters attempt to lay out constraints on growth, initially hewing closely to the first two Do the Math posts on Galactic Scale Energy and Can Economic Growth Last. Chapter 3 on population echoes some points in The Real Population Problem, but adds substantial analysis of the demographic transition. I felt this was an important addition because many academics look to this mechanism to “solve” the population problem. What I point out is that the transition is a double-whammy for planetary resources: even though the result is zero-growth, the road to that point involves a population surge and increasing resource usage per capita. More people multiplied by a higher per-capita resource use is bad news for resource constraints. The dream, therefore, has a nightmarish element that might be neglected by many because demographic transitions of the past were not constrained in this way and seemed to be very positive, on balance. A recurring message: the highly abnormal recent past offers poor guidance to the future. Finally, Chapter 4 echoes the popular Why Not Space post, closing off this exit—or at least prompting the invested believers to cast the book aside and waste their time in a manner more to their liking.

Chapter 5 is a dry one on units, and does not exist on Do the Math except in a static page called Useful Energy Relations. Chapter 6 consolidates several posts on thermal energy and heat pumps. Chapter 7 is basically new, as a snapshot of U.S. and global energy and plots of recent trends.

Elements of Chapter 8 on fossil fuels can be found among the Do the Math posts—especially those on peak oil. But no overview of fossil fuels really existed on the blog. Chapter 9 on climate change is similar to the Recipe for Climate Change in Two Easy Steps, but is considerably expanded to detail the expected impact on temperature, explore limiting-case scenarios for the future, and delve into the thermal requirements for heating the ocean and melting ice.

Chapter 10 provides an overview of Earth’s energy budget and introduces the alternative and renewable energy options. This short chapter has no direct analog in Do the Math.

The heart of the book covers topics that do not change much over time: technologies for harnessing alternative energy. Prices might change, but the fundamentals tend not to. Thus, Chapters 11 through 16 largely echo Do the Math content. Note that the writing itself is new, and has benefited from extensive student feedback to improve clarity and accessibility. So it’s not a cut-and-paste job, but the overall take-aways are going to be familiar to Do the Math readers. Chapter 17 is the book’s version of The Alternative Energy Matrix, and is the closest thing to cut-and-paste in the book, being billed as a slightly edited reproduction of an existing chapter in the State of the World 2013 book.

The two main changes in the alternative energy chapters have to do with solar prices going down (now at under $3/Watt for residential and $1/Watt for utility-scale installations; the panels themselves being $0.50/Watt) and new recommendations for wind-farm turbine spacing, lowering the estimated power per land area available. I also added state-by-state maps for hydroelectricity, wind, and solar photovoltaic utilization in the U.S., for four different attributes (total power, power per area, power per person, and capacity factor).

The last three chapters depart the most from Do the Math content, although containing familiar elements like an exploration of personality types and a description of the Energy Trap. Chapter 20 bears some resemblance to posts on household energy and dietary choices. But the packaging may be different enough that it does not feel like repetition of Do the Math.

The Epilogue is completely new, and likely of interest to Do the Math readers.

Appendix D is the most thoughtful Appendix. Of greatest interest will be D.3 on electric transportation, D.5 on the long view of human success, and D.6 on an evolutionary perspective regarding human intelligence and how that may or may not mesh well in the natural world.

Highlights of New Results

The following tidbits are arranged in chronological order, and for the sake of brevity only represent the more thought-provoking additions.

In Chapter 2, Figure 2.3 on lighting efficiency progress surprised me in that the same 2.3% growth rate adopted for Chapters 1 and 2 on growth of energy fits the lighting history rather well. If the trend continues, we reach theoretical limits well before century’s end.

Chapter 3 has one new development and one new presentation of interest. The development is the recognition that the population surge associated with a demographic transition is proportional to the exponential of the change in birth/death rate times the lag between declining death rate and declining birth rate (Figure 3.16). The factor can easily more than double the pre-transition population. The new presentation is in Figure 3.17, exposing how preposterous the “dream” scenario looks of advancing a growing population to “western” energy standards by the year 2100. Substances that facilitate such delusions are usually illegal.

The only thing I’ll say about Chapter 4 here is that I planted an (accurate) Easter egg in Figure 4.2—only applicable to the electronic version.

I was surprised by Figure 7.9, showing the U.S. as a literal super-power (as measured in Watts) in the mid-twentieth century—using more than 80% of global natural gas and over 70% of global petroleum. I don’t think it’s a coincidence that some Americans long to return to these “glory” years (not at all glorious for less privileged individuals, it should be noted). The mistake is thinking that it’s a matter of choice. America’s dominant role in the world had a resource foundation, and that ship has sailed. It’s not a matter of politics: it’s physics, and anger won’t solve it.

Figure 8.8 made an impression on me as well. A simple calculation based on discovery and consumption of conventional oil, as presented in Figure 8.7, provides a measure of how many years appear to remain in the resource. Simply dividing unconsumed reserves by current consumption gives a timescale, and this can be tracked as a function of time as new discoveries accumulate and consumption rate increases. The startling result is that the predicted endpoint has not budged from around the year 2050 for about four decades! I caution readers not to take this literally to mean that oil runs out in 2050. First, the plot only applies to conventional oil reserves. Second, reduced consumption rate due to scarcity, prices, policy directives, or suitable substitutes will mean a tapering beyond 2050 rather than abrupt termination. Still, it’s a relevant and alarming data point: conventional oil is unlikely to persist in its present dominance for even three more decades! I think that’s big news, people. How many decades old are you?

A number of new results accompany Chapter 9 on climate change. Most rewardingly, I “took it up a notch” from the previous calculations of annual and cumulative CO2 emissions from fossil fuels and used annual data on fossil fuel use to produce a graphs of emissions from the three fossil fuels across time (Figure 9.3). Doing so shows coal’s prominence as the king of CO2 emitters—now and throughout the past. Since we still have more coal than any other fossil fuel, it may just be the gift that keeps on giving. But most remarkable was the exercise of plotting the predicted emission on top of measurements in Figure 9.4. Prior to this, I was satisfied by getting the annual and cumulative emission numbers to match measurements. But to see it graphically: faithfully following the curvature and lying right atop the measurements brought a smile of despair to my face. The same approach lends itself well to exploring CO2 emissions scenarios for fossil fuel expenditures going forward: what happens if we cease growth in consumption; if we replace all coal with natural gas; or if we taper off entirely by 2100 or 2050. Only the last, draconian option limits the ultimate temperature rise to 2.0°C, according to my math.

I also had some “fun” in Chapter 9 stepping through the process by which a radiative imbalance equilibrates (Figure 9.15), and computing the timescales for melting ice and heating up the ocean (section 9.4.2).

Box 13.3 in Chapter 13 looks at solar-powered transportation. Why had I never before computed that a Boeing 737 could only get 4% of its cruise power from direct solar power? It’s an important demonstration of physical limitations.

Box 14.3 computes the thickness of all life on the planet, if squashed to a uniform layer surrounding the globe. It’s 4 mm thick! Or should I say 4 mm thin? That’s precious thin: a fragile wafer. It’s what makes this planet special, and our own lives possible. That’s the ultimate treasure of the planet, and deserves every protection we can offer.

Figures 15.14 and 15.15 are my attempt to explain the origin of nuclear waste, and why the neutron-rich daughter nuclei are radioactive hazards. This resurfaces in Figure 15.19 on nuclear waste radiated power, which I derived from probabilities and decay energies found in the Chart of the Nuclides. On another front, a quick-and-dirty financial assessment for both fission and fusion does not put them in a favorable light against (also expensive) solar, while solar is much safer.

The only good part about Chapter 16 is the fish duo in Figure 16.2.

Box 17.1 is a bit of a follow-up to Box 13.3 on solar transportation, exploring electric (battery-powered) passenger airplanes, concluding that for the same “fuel” load, range would be cut by a factor of 20 (to about 200 km), making them sort-of useless.

Chapter 17 also introduces an alternative scoring of the Matrix, based on student weights for the ten attributes of each source. I was interested to see if the fossil fuel gap persists (it does), and if the rankings change (mostly, they don’t).

Box 19.1 takes a stab at quantifying the dollar value of Earth. It’s a crude approach, and not entirely defensible. But even under dubious assumptions, the resulting price is so preposterously large that the point is fairly robust: Earth is far more valuable than our global annual economy, by as much as a factor of a million. Decisions based on money (i.e., most decisions) are therefore woefully misguided. Earth and its ecosystems should come first in societal decisions. Sorry if capitalism gets hurt in the process. Money ceases to have meaning without a life-bearing planet. Priorities!

Chapter 20 works to frame individual adaptation and quantitative assessment of energy footprints. The biggest new piece is the quantitative toolset developed in Section 20.3.4 for assessing dietary energy impact. I think this kind of analysis has the potential to meaningfully reshape our habits and expectations around food choices.

Section D.3 in the Appendices represents a first attempt on my part to nail down the implications of electrified transport for shipping as well as personal transport. Part of the work was already done for Box 17.1 (airplanes), but I had never put pencil to paper on cargo ships or long-haul trucking. The results address the “why can’t we just…” musings on electrifying all transportation. It’s hard. Table D.2 is still new enough to me that I need to study it more and internalize it.

Big Stuff

Okay—that takes care of the nuts-and-bolts additions. What larger messages might emerge from the textbook that may not have been apparent in previous Do the Math content?

Life is Precious

Much of the focus of this blog, and of the textbook, is on energy and resources. But a consistent undercurrent advocates prioritizing nature above ourselves. See, for instance, the reference to Box 14.3 in the section above. Also, Box 19.1—in computing the monetary value of the planet—stresses the backwards way we assess value. We put the flea (economy) in charge of the dog (Earth), ignoring the important fact that the flea can’t live without the dog. An upcoming post will illustrate this theme in an absurd yet compelling manner.

In the end, as the Epilogue wraps up, I try to encapsulate this in a message to the future (but not too soon to adopt the message now!!): Treat nature at least as well as we treat ourselves. It’s a partnership, and the health of the former is a prerequisite to the health of the latter.

Focus on the Long Term

Chapters 18 and 19 discuss the limitations of short-term focus in the face of our challenges. Democracy and business interests tend to have a very short focus, making us vulnerable to the Energy Trap.

But Section D.5 in the Appendix takes this to an expansive vista. It starts with the observation that civilization (cities, agriculture) began roughly 10,000 years ago. Lest we be nearer our end than the beginning, we should be thinking about practices consistent with another 10,000 years on this planet, at least. Maintaining uninterrupted civilization (preserving knowledge without a catastrophic reset) for this long is what we will call successful. Failure to do so is, well, failure.

What would it take to achieve success? As spelled out in section D.5, almost nothing we do today contributes to ultimate success. Therefore most of our actions today only make failure more likely. To me, that is sad to contemplate. Each passing day that we do not prioritize the natural world makes ultimate success a more distant prospect.

Section D.6 follows this up with musings on the role of human intelligence in an evolutionary context. My conclusion is that evolution tinkers, and is capable of producing a being that is too smart to succeed. We have the power to create our own failure, and take many species down with us. It’s time to “ask not” what we can do with our power, but what we should do to best ensure a long, rewarding existence in partnership with the rest of nature.

This Moment is Abnormal

Perhaps the most important message the new textbook can convey is that the abnormality of the last few centuries has turned us into the worst judges of future possibilities. Several times in the book, I compare the present era to a fireworks show: dazzling, awe inspiring, and a short-lived exception to “normal” activity. At least we can appreciate the aberration that a fireworks display represents by comparing it to a longer baseline: we have a broader context. Yet for those born and raised entirely within the fireworks show, it is easy to understand how their world view would be badly distorted.

Margin note 12 in Chapter 2 and the one below it points out our tendency to extrapolate, and think that just because we got “lucky” once (finding and learning to exploit fossil fuels) does not mean the trend will continue indefinitely. People often process the abnormality of our time in a dangerous way: because people 200 years ago could not possibly have predicted the amazing life of today, we are equally ill-equipped to fathom the miracles of tomorrow. I appreciate the bigness of thought that it takes to conceive of this. It’s a fair and alluring point. But it also ignores data and context: physical limits; a “full” earth; exhaustion of one-time resources; climate change perils; systemic collapses in ecosystems around the globe. Please work harder to incorporate these “wrinkles” into an otherwise grand notion.

Somewhat relatedly, margin note 24 in Chapter 2 and note 11 in the Epilogue make reference to the “Boy Who Cried Wolf” parable. This is a story told by adults to caution kids against raising false alarms, as setting up a reflexive dismissal of “fake news” can have damaging consequences. But consider two overlooked aspects of this story: first, a wolf did eventually appear and wreak havoc; and second, shouldn’t the adults bear responsibility for not protecting the town? Is the child really to blame? What idiots would put the responsibility of town protection on a child? I say that the failure rests mostly on the adults. They should recognize that children are prone to false alarms, and admonish them for knowingly creating disruption—after checking on the possibility of a real threat, for goodness sake! They utterly dropped the ball, and paid the price.

I came to think as I put finishing touches on the textbook that if asked to pick one message to communicate with this book it would be that the recent highly anomalous past has cruelly misshapen our perception of future possibilities. I put this into the abstract (and the back cover of the paperback), and sprinkled it into the text as an afterthought (search the word fireworks for some instances). As important as this point is, its presence throughout is implicit. I will likely try to more directly integrate the thought into a future edition.

A grounded understanding that our time is grossly abnormal in the long view is, I think, a necessary first step in snapping out of our current mindset, shaking off fantastical dreams, and getting to work defining and implementing a future that can actually work. It’s time to break the spell.

HELP SPREAD THE WORD

I am too close/biased to judge whether this book has enough intrinsic merit and appeal to “catch on” and reach a broad audience. But people will not give it a chance and instructors won’t adopt it for classrooms if too few people even know about it. Because I intentionally bypassed a for-profit publisher to make the book freely available, I lose the benefit of any publicity apparatus a publishing company might provide. So it’s down to “the people” to let others know of its existence. Fortunately, social media channels are well suited to this. Please consider sharing this book with others (reference the link to the book, not this “inside baseball” post). I hope the book is written in a way that can draw people in and then inspire them to keep turning pages. If recommending to friends and family, perhaps think about targeting a section or two to avoid their feeling overwhelmed by a textbook-sized reading assignment. If you can think of a personal connection to make it more directly relevant to them, all the better.

I don’t think I have ever asked for this sort of favor, and am not wholly comfortable with the appearance that I am shamelessly self-promoting here. But since I receive no financial benefit (even from the printed book) or prospect of job promotion as a result, I can convince myself that it’s out of a hope that the book might have some power to change minds and play some small role in setting us onto a more successful path. Call it optimism, bias, over-confidence, or whatever, but if the book can gain significant traction, then perhaps it deserves every chance and advantage. If months or years go by, this “old news” textbook will no longer have the shiny luster of newness, and will be less likely to spark a flame equal to the task ahead of us. The book may flop on its own (lack of) merits; then it flops—so be it. But let’s at least be able to say that it wasn’t for lack of trying to make people aware of its presence.

Apneaman wrote a song to celebrate the return of Tom Murphy:

Hey-la-day-la my Physicist’s back

He went away and hopium hung around
And bothered me, every night
And when I wouldn’t buy into it
You said things that weren’t very nice
My Physicist’s back and you’re gonna be in trouble
(Hey-la-day-la my Physicist’s back)
You see him comin’ better SHUT UP on the double
(Hey-la-day-la my Physicist’s back)
You been spreading lies that collapse was untrue
(Hey-la-day-la my Physicist’s back)
So look out now ’cause his math foretells doom
He’s been gone for such a long time
(Hey-la-day-la my Physicist’s back)
Now he’s back to prove we’re out of time
(Hey-la-day-la my Physicist’s back)
We’ll all be sorry we were ever born
(Hey-la-day-la my Physicist’s back)
‘Cause his brain’s kinda big and his math’s da bomb
(Hey-la-day-la my Physicist’s back)
(You’re a Green dreamer now but he’ll cut you down to size
(Wait and see)
My Physicist’s back he’s gonna prove our damnation
(Hey-la-day-la my Physicist’s back)
If I were you I’d pray for endtimes salvation
(Hey-la, hey-la, my Physicist’s back)
Yeah, my Physicist’s back (La-day-la, my Physicist’s back)
Look out now, yeah, my Physicist’s back (La-day-la, my Physicist’s back)
I could see him comin’ so you better get a runnin’ alright now (La-day-la, my Physicist’s back)
Yeah, yeah, yeah, yeah, yeah (La-day-la, my Physicist’s back)
My Physicist’s back now (La-day-la, my Physicist’s back)
Know he’s comin’ after you because he knows I’ve been true to doom (La-day-la, my Physicist’s back)